
Chapter 1, An Introduction to Linux

John M. Morrison

November 15, 2020

Contents

1 Introduction 1

2 In the Beginning . . . 2

3 The Anatomy of a UNIX Command 3

4 Managing Directories 4

4.1 Processes and Directories . 7

5 Paths 8

6 A Field Trip 9

7 Making and Listing Regular Files 11

8 Renaming and Deleting Files 13

8.1 Everything is a Computer Program 15

9 Editing Files with vi 18

9.1 A Note for Ubuntu Users . 19

9.2 Launching vi . 19

9.3 vi Modes . 20

9.4 Cut and Paste . 23

9.5 Cutting and Pasting with External Files 24

1

9.6 Searching and Substutiing . 24

10 Visual Mode 25

10.1 Replace Mode . 27

11 Copy Paste from a GUI 27

11.1 Permissions . 29

12 The Octal Representation for Permissions 30

13 The Man 31

14 Lights, Camera, Action! Where's the Script? 34

15 Redirection of Standard Output and Standard Input 36

16 More UNIX Filters 38

16.1 The sort �lter . 38

16.2 The Filters head, tail, and uniq 39

16.3 The grep Filter . 40

16.4 Serving up Delicious Data Piping Hot 40

1 Introduction

You are probably used to running a computer with a graphical user interface
(GUI) that gives you a desktop and icons to work with using your mouse and
keyboard.

You likely run Windoze, MacOSX, or you may be running a Linux GUI on
your machine. The GUI allows you to communicate with the operating system,
which is the master program of your computer that manages such things as
running applications and maintaining your �le system.

In this book, we will study the Linux operating system in its command-line
guise. You will control the computer by entering commands into a text window
called a terminal window. Typically they look something like this.

2

The name �terminal� name harkens back to the days when you had an actual
appliance on your desk consisting of a (heavy) CRT screen and keyboard that
was connected to a computer elsewhere. Your terminal window is just a software
version of this old appliance. You will enter commands into this window to get
the remote machine you are communicating with to perform various tasks.

The text string morrison@odonata appearing in the window is called the
prompt. Its presence indicates that the computer is waiting for you type in a
command. Your prompt will likely be di�erent.

2 In the Beginning . . .

As we progress, everything will seem unfamiliar, but actually relate very directly
to some very familiar things you have seen working with a computer having a
GUI. We assume you have basic pro�ciency using some kind of computer such
as a Mac or a Windoze box, and we will relate the things you do in Linux to
those you do in your usual operating system.

Log in to your UNIX account. If you are working in a Linux GUI, or a Mac,
just open a terminal session. The �rst thing you will see after any password
challenge will resemble this

[yourUserName}@hostName yourUserName}]$

or this

[yourUserName}@hostName ~]$

On a Mac, it will resemble this

3

John-Morrisons-MacBook-Pro:~ morrison$

The presence of the prompt means that Linux is waiting for you to enter a com-
mand. The token yourUserName will show your login name. Your prompt may
have an appearance di�erent from the ones shown here; this depends on how
your system administrator sets up your host or on the type of Linux distribution
you are using. The appearance of your prompt does not a�ect the underlying
performance of UNIX. In fact, the properties of your session are highly con�g-
urable, and you can customize your prompt to have any appearance you wish.

To keep things simple and uniform throughout the book, we will always use
$ to represent the UNIX prompt. You will interact with the operating system
by entering commands, instead of using a mouse to push buttons or click in
windows.

When you see this terminal, a program called a shell is running. The
shell takes the commands you type and passes them on to the operating system
(kernel) for action. You will type a command, then hit the ENTER key; this
causes the command to be shipped to the OS by the shell. The shell then
conveys the operating system's reply to your terminal screen. Think of the shell
as a telephone through which you communicate with the operating system. This
analogy is only �tting since UNIX was originally developed at AT&T Bell Labs.

We will begin by learning how to interact with the �le system. This is what
give you access to your programs and data, so it is very fundamental.

3 The Anatomy of a UNIX Command

Every UNIX command has three parts: a name, options, and zero or more
arguments. They all have the following appearance

commandName -option(s) argument(s)

Notice how the options are preceded by a -. Certain �long�form� options are
preceded by a --. In a Mac terminal, all options are preceded by a simple -.

A command always has a name. Grammatically you should think of a com-
mand as an imperative sentence. For example, the command passwd means,
�Change my password!� You can type this command at the prompt, hit enter,
and follow the instructions to change your password any time you wish.

Arguments are supplementary information that is sometimes required and
sometimes optional, depending on the command. Grammatically, arguments
are nouns: they are things that the command acts upon.

Options are always, well, ... optional. Options modify the basic action of the
command and they behave grammatically as adverbs. All familiar features of a

4

graphics-based machine are present in Linux, you will just invoke them with a
text command instead of a mouse click. We will go through some examples so
you get familiar with all the parts of a Linux command.

Two very basic Linux commands are whoami and hostname. Here is a typical
response. These commands give, respectively, your user name and the name of
the host you log in to.

Now we run them. We show the results here; your computer will show your
login name and your host name. Here is what they look like on a server.

$ whoami
morrison
$ hostname
carbon.ncssm.edu
$

Here is their appearance on a PC (A Mac in this instance).

$ whoami
morrison
$ hostname
John-Morrisons-MacBook-Pro.local
$

We will next turn to the organization of the �le system.

4 Managing Directories

We will do a top�down exploration of the �le system. In this spirit, we will �rst
learn how to manage directories; this is the UNIX name for folders. You will
want to know how to create and manage folders, ummmm... directories , and
how to navigate through them.

You have been in a directory all along without knowing it. Whenever you
start a UNIX session, you begin in your home directory. Every user on a UNIX
system owns a home directory. This is where you will keep all of your stu�. You
will see that ownership of stu� is baked right into a UNIX system.

To see your home directory, type pwd at the UNIX prompt. This command
means, �Print working directory!� You will see something like this.

$ pwd
/home/faculty/morrison

5

This directory is your home directory. Whenever you start a new session, you
will begin here. This is the directory where all the stu� that belongs to you is
kept.

In this example,morrison is a directory inside of faculty, which is inside
a directory home, which is inside the root directory, /. Your home directory
will likely be slightly di�erent. It is very common for UNIX systems to keep all
user directories inside of a directory named home. Often, several di�erent types
of users are organized into sub-directories of home. You will later see that all
directories live inside of the root directory, /. Enter the pwd command on your
machine and compare the result to what was shown here. Become familiar with
your home directory's appearance so you can follow what goes on in the rest of
this chapter.

If you are using Linux on your PC, your home directory will likely look like
this.

/home/morrison

This directory structure is exactly the same as your hierarchy of folders and
�les on a Mac or a Windoze box. You already know that folders can contain
�les and other folders. This is also true in a UNIX environment.

To make a new directory in Mac or Windoze, you right click in the open folder
and choose a menu for making a new folder. In UNIX, the mkdir command
makes a one or more new directories. It requires at least one argument, the
name(s) of the director(ies) you are creating. Let us make a directory by typing

$ mkdir Projects

makes a directory called Projects; this directory is now empty. We can always
get rid of an empty directory or directories by typing the rmdir command like
so.

$ rmdir garbageDirectory(ies)

In this case, garbageDirector(ies) stands for the directory or directories you
wish removed.

The rmdir command will not remove a directory unless it is empty. There
is a way to snip o� directories with their contents, but we will avoid it for now
because it is very dangerous. For now, you can delete the contents of a directory,
then remove the directory. Be warned as you proceed: When you remove �les

or directories in Linux, they are gone for good! There is no �undelete.�

If you got rid of the Projects directory, re-create it with mkdir. To get into
our new directory Projects, enter this command.

6

$ cd Projects

and type ls. You will see no �les. This is because the directory Projects
is empty, and ls by default only shows you the �les in the directory you are
currently occupying. The command cdmeans, �Change directory!� Having done
this now type

$ pwd

You will see a directory path now ending in Projects.

There is a command called touch which will create an empty �le(s) with a
name(s) you specify. Create �les named moo and baa with touch as follows.

$ touch moo baa

Then enter ls at the command line. This command means �list stu�.� You
will see just the �les you created.

As we said before, The command ls displays only �les in the directory you
are currently occupying. This directory is called your current working directory,
or cwd for short. Every terminal session has a working directory. When you
�rst log in, your working directory is always your home directory.

/home/yourUserName/Projects

This directory is the Projects directory you just created.

If you type cd without arguments, you will go straight back to your home
directory. This should make you will feel like Dorothy going back to Kansas.
Now if we use pwd again we see our home directory printed out.

7

You can also see your home directory anywhere you are by typing

$ echo $HOME

The fearsome�looking object $HOME is just a symbol that points to your home
directory. There are various items like this present in your system. They are
called environment variables. Other examples of environment varialbes include`
$PWD, which is just your current working directory and $OLDPWD which is your
previous working directory.

Programming Exercises

1. Navigate to a directory. Then enter this.

$ pushd

Then navigate to anohter directory and repeat this a few times. Now
alternately type

$ popd
$ pwd

8

What does this do? Think of Hansel and Gretel!

2. Crawl aroud in your directory strucutre. Each time you enter a new
directory type

$ echo $PWD
$ echo $OLDPWD

3. Use cd to change into some directory. Then type cd - and then pwd.
Repeat this. What does - mean?

4.1 Processes and Directories

We know that when we log in, we are starting a program called a shell. The
shell is a process, or running program. Every process has a cwd (current working
directory). When you type pwd into your shell, you are asking the OS to tell
you your shell's current working directory. If you log in to a UNIX server in
several terminal windows, each runs in a separate shell, so each has can have its
own working directory.

Observe that, much of the time, your shell is idle. When you �nish typing
a command and hit the enter key, that command launches a program, that
program runs, and any output is directed to your terminal window.

The command cd is a computer program. What it does is it changes the cwd
of the shell that calls it. Now you know what it means to be �in� a directory: it
means the cwd of your shell is that directory.

Programming Exercises

1. Enter

$ cd $HOME/Projects

and see what happens.

2. Make these directories inside of Projects labors, feats and chores

3. Type cd labors at the command line then pwd.

4. Type cd .. at the command line then pwd. What happened?

5. Type cd .. at the command line again, then pwd. What happened?

6. What do you think .. is?

7. Type cd . at the command line then pwd. What happened?

8. Type ls . at the command line then pwd. What happened?

9. What do you think . is?

9

5 Paths

The location of your home directory is speci�ed by a path that looks something
like this /home/morrison. This path is an example of an absolute path, because
it speci�es a location in the �le system starting at the root directory.

All absolute paths start with a / or a ~. Here are the three kinds of absolute
paths.

� Paths beginning with a / are speci�ed starting at the root directory.

� The symbol ~ is shorthand for your home directory. It is an absolute
path. Try going anywhere in the �le system and type cd ~; it will take
you straight home, just as cd does by itself.

� A path beginning with ~someUserName speci�es the home directory of the
user someUserName.

Absolute paths work exactly the same, no matter where you are in the �le
system.

Relative paths are relative to your cwd. Every directory contains an entry
for its parent and itself. Make an empty directory named ghostTown and do an
ls -a.

$ mkdir ghostTown
$ cd ghostTown/
$ ls -a
. ..

If you type cd .., you are taken to the parent directory of your cwd; this
path is relative to your cwd. Any path that is not absolute is relative. When
you are navigating in your home directory, you are mostly using relative paths.
Note that any relative path can also be represented as an absolute path.

Programming Exercises

1. Try typing cd .. then pwd a few times. What happens?

2. Type cd. Where do you go?

3. Type cd /bin (on a mac /usr/bin) then ls cd* You will see a �le named
cd that lives in that directory.

6 A Field Trip

To get to our �rst destination, type cd /. The directory / is the �root� directory;
it is an absolute path. If you think of the directory structure as an upside-down

10

(Australian) tree (root at top), the directory / is at the top. Type pwd and
see where you are. Type ls; you should see that the directory home listed with
several other directories. Here is what the directory structure looks like on a PC
running Red Hat Fedora Core 9. Yours may have a slightly di�erent appearance.

$ cd /
$ ls
bin etc lib mnt root srv usr
boot home lib64 opt run sys var
cdrom initrd.img lost+found proc sbin tmp vmlinuz.old
dev initrd.img.old media root selinux vmlinuz
$

Now type if we type cd home then ls, you will see one or more directories. On
the machine being used here, you would see

$ cd home
$ ls
guest lost+found morrison

This machine has two users, morrison and guest. Since it is a personal com-
puter, it does not have many users. You may be working on a server in which
there could be dozens, or even hundreds of other users who are organized into
various directories.

Here is an example from a fairly busy server.

$ cd /home
$ ls
2016 2018 2020 gotwals menchini rash
2017 2019 cs keethan.kleiner morrison rex.jeffries
$

The directories with the years are directories full of user's home directories. We
will list one here. It has quite a few users in it.

$ ls 2019
allen19m hablutzel19k laney19m mullane19n wang19e
bounds19a hirsch19m lheem19h ou19j wolff19o
carter19d hou19b lin19b overpeck19c yang19j
cini19a houston19b liu19c perrin19p zhuang19a
eun19e houston19p manocha19a sakarvadia19m
gupta19a knapp19t mitchell19m villalpando-hernandez19j
$

11

See if you can follow this all the way down to another user's home directory.
You may be able to list the �les there, or even read them, depending on that
user's permissions. From this modest demonstration, you see that you can step
down through the directory structure using cd. Now we will learn how to step
up.

Try typing cd ..; the special symbol .. represents the directory above your
cwd. Now you can climb up and down the directory structure! The .. symbol
works like the up-arrow in a �le chooser dialog box in Mac or Windoze. You
saw this when you did the last group of exercises.

Practice this; go back to your home directory. Make a new directory called
mudpies. Put some �les in it. Make new directories in mudpies, got down inside
these and make more directories and �les. Practice using cd to navigate the
tree you create. When you are done, get rid of the whole mess; remember you
have to go to the bottom, empty out the �les using rm and then use rmdir to
get rid of the empty directories.

If you type ls in a directory, notice how any directories inside it are in
di�erently colored type than regular �les. This color is often blue. You can use
the -F option in ls to print directory names with a slash (/) after them. Try
this; it was an important option back in the days of monochrome monitors. If
you use the -l option in ls, you will see that in the permissions column, the
column begins with a d for any directory. Here is a possible sample

-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 foo
drwxrwxr-x 2 morrison morrison 4096 Jun 9 14:54 junk

You can see there that bar and foo are empty �les. Notice the d at the
beginning of the line in junk; this tells you junk is a directory.

7 Making and Listing Regular Files

In Chapter 0, we learned that the operating system is responsible for maintaining
the �le system. The �le system maintained by a UNIX system consists of a
hierarchy of �les. Two types of �les will be of interest to us: directories

(folders) and regular �les, i.e. �les that are not directories. Regular �les may
hold data or programs. They may consist of text or be binary �les that are not
human-readable.

You are used to working with regular �les and directories in Windoze or
MacOSX. Things in UNIX work the same way, but we will use commands to
manage �les instead of mouse clicking or dragging.

As we have already seen us now use the UNIX command touch to create

12

new �les. This command creates an empty �le for each argument given it. At
your UNIX prompt, enter

$ touch stuff

This creates the empty �le named stuff in your account.

Now let us analyze the anatomy of this command. The name of the command
is touch; its purpose is to create an empty �le. Since you do not see a - sign,
there are no options being used. The argument is stuff. This is the name of
the �le you created. Create a few more empty �les. Enter these commands

$ touch foo
$ touch bar

You may create several �les at once by making a space-separated list as we show
here.

$ touch aardvark buffalo cougar dingo elephant

Now you have eight new �les in your account. Next we will see how to list the
�les. Enter this command at the UNIX prompt

$ ls

The command ls lists your �les. Notice we had neither options nor arguments.
If you created the �les using touch as instructed, they should appear on your
screen like this

$ aardvark bar buffalo cougar dingo elephant foo stuff

The command ls has several options. One option is the l option; it list the
�les in long format. To invoke it, type

$ ls -l

You will see a listing like this

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 aardvark
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 buffalo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 cougar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 dingo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 elephant
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

13

The �rst column re�ects the permissions for the �les. The sequence

-rw-rw-r--

indicates that you and your group have read/write permission and that others
(�the world�) has read permission. We will discuss permissions in more detail
when we discuss the management of directories.

You can see the name here is listed in two columns; on this machine morrison
is in his own group. On another system, you may live in group with several other
people; if so you will see the name of that group in one of these columns. The
zero indicates the size of the �le; each �le we created is empty. Then there is a
date, a time and the �le name. This is the long format for �le listing; it is seen
by using the -l option in the ls command.

Another option is the -a option. This lists all �les, including �hidden� �les.
Hidden �les have a dot (.) preceding their name. To see them, enter

$ ls -a

at the command line. One thing you are guaranteed to see, no matter where
you are are are the directories .. (parent) and . (current). If you are in you
home directory, You will see the �les you saw using ls and several hidden �les
with mysterious names like bash_profile. Do not delete these; they provide
the con�guration for your account and do things like record preferences for
applications you have used or installed. You can also list all �les including
hidden �les by entering

$ ls --all

You can use more than one option at once. For example, entering

$ ls -al

or

$ ls -a -l

$ ls --all -l

shows all of your �les and hidden �les in long format. Try this now on your
machine.

Note to Mac Users Mac users should precede verbose commands with a
single -. So on a Mac, you type

14

$ ls -all -l

and not

$ ls --all -l

Otherwise, your Mac will respond with a cryptic error message.

Next we will show how to display a �le to the screen. UNIX commands that
process �les are called �lters. Filters accept input from a �le,

Let us peek inside your .bash_profile �le. Enter the command

$ cat .bash_profile

The command name is cat, short for catalog (the �le to the screen). The cat
command is a �lter that does not �ltering at all; it simply dumps the entire
�le to the screen all at once. We are using no options, but the �le name is an
argument to cat. If a �le is long and you want to see it one screenful at a time,
use the �lter more. The command more takes a �le name as an argument and
shows it on the screen a screenful at a time. You can hit the space bar to see
the next screenful or use the down-arrow or enter key to scroll down one line at
a time. To exit more at any time, type a q and more quits. You can use several
arguments in cat or more and the indicated �les will be displayed in seriatum.

8 Renaming and Deleting Files

Three commands every beginner should know are: cp,rm and mv. These are,
respectively, copy, remove and move(rename). Here are their usages

cp oldFile newFile

rm garbageFile(s)

mv oldFile newFile

Warning! Pay heed before you proceed! To clobber a �le means to unlink
it from your �le system. When you clobber a �le it is lost and there is virtually
no chance you will recover its contents. There is no undelete facility as you
might �nd on other computing systems you have used.

If you remove a �le it is clobbered, and there is no way to get it back without
an in�nitude of horrid hassle. If you copy or rename onto an existing �le, that
�le is clobbered, and it is gone forever. Always check to see if the �le name
you are copying or moving to is unoccupied! When in doubt, do an ls to look
before you leap. All three of these commands have an option -i, which warns
you before clobbering a �le. Using this is a smart precaution.

15

The �rst command copies oldFile to newFile. If newFile does not exist, it
creates newFile; otherwise it will overwrite any existing newFile.

Try this at your UNIX prompt: cp .bash_profile quack

Notice that the command cp has two arguments: the source �le and the
recipient �le. If you executed the last command successfully, you made a copy
of your .bash_profile �le to a �le called quack.

Next, let's get rid of all the animals in the zoo we had created before. The
command rm will accept one or more arguments and remove the named �les.
We can accomplish this in one blow with

$ rm aardvark buffalo cougar dingo elephant

Now enter

$ ls -l

You will see that quack's size is nonzero because it has a copy of the contents
of your .bash_profile �le in it. The �le shown here has size 191. The size is
the number of bytes contained in the �le; yours may be larger or smaller. You
will also see that the menagerie has been sent packing.

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo
-rw-r--r-- 1 morrison morrison 191 Jun 9 11:25 quack
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

Let us now remove the �le stuff. We are going to use the -i option. Enter
this at the UNIX prompt.

$ rm -i stuff

The system will then ask you if you are sure you want to remove the �le. Tell
it yes by typing the letter y. Be reminded that the -i option is also available
with cp and mv. You should you use it to avoid costly mistakes.

Finally, we shall use mv This �moves� a �le to have a new name. Let's change
the name of quack to honk and back again. To change quack to honk, proceed
as follows.

$ mv quack honk

Once you do this, list the �les in long format. Then change it back.

Now you know how to copy, move, and create �les. You can show them to
the screen and you can list all the �les you have. So far, we can create �les two
ways, we can create an empty �le with touch or copy an existing �le to a new
�le with cp.

16

8.1 Everything is a Computer Program

Now let us take a little look under the hood. When you log in, shell is launched.
The shell accepts commands you enter at the prompt and sends them to the
kernel, or operating system, which runs the program. This can cause output to
be put to the screen, as in ls, or happen without comment, as in rm.

Programs that are running in UNIX are called processes. Every process has
an owner and an integer associated with it called a process ID (PID). The user
who spawns a process will generally be its owner. You are the owner of all
processes you spawn. Many, such as ls, last such a short time you never notice
them beyond the output they produce; they terminate in a fraction of a second
after you enter them. When you log into your host, you actually are launching
a program; this is your shell. When the shell terminates, your terminal session
will be gone. At the command line, enter ps and you will see something like
this.

$ ps
PID TTY
10355 pts/1
10356 pts/1
$
TIME CMD
00:00:00 bash
00:00:00 ps

The ps command shows all processes currently running spawned by your
shell. On this machine, the shell's (bash) process ID is 10355. By entering
ps aux at the command line, you can see all processes running on your UNIX
server, along with their process IDs and an abundance of other information. Try
this at several di�erent times. If you are using a server, you will see processes
spawned by other users. You will also see other processes being run by the
system to support your machine's operation.

An example of a program that does not �nish its work immediately is the
program bc. We show a sample bc session here; this application is a simple
arbitrary-precision calculator.

$ bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
3+4
7

17

4*5
20
2^20
1048576
2^100
1267650600228229401496703205376
quit

When you type bc at the command prompt, the shell runs the bc program.
This program continues to run until you stop it by typing quit. To see bc's
process ID, start bc and then type Control-Z to put it to sleep. This interrupts
the bc process, puts it in the background, and returns you to your shell. Then
enter ps at the command prompt to see the process ID for your bc session.

$ bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
[1]+
$ ps
PID
14110
14253
14254
$
Stopped
TTY
pts/4
pts/4
pts/4
bc
TIME
00:00:00
00:00:00
00:00:00
CMD
bash
bc
ps

Try typing exit to log out; you will see something like this.

$ exit

18

exit
There are stopped jobs.
$

Now type jobs at the command prompt. You will see this.

$ jobs
[1]+ Stopped
$
bc

You can end the job bc labeled [1] by doing the following

$ kill %1
$ jobs
[1]+ Terminated
$ jobs
$
bc

If several jobs are stopped, each will be listed with a number. You can end any
you wish to by entering a kill command for each job. When you type jobs
at the command line the �rst time, it will tell you what jobs it has suspended.
After that, you will see a (possibly empty, like here) list of jobs still in the
background. Do not dismiss a shell with running jobs; end them to preserve
system resources.

You can bring your stopped job into the foreground by entering fg at the
command prompt.

Exercises

1. Start up a session of bc and put it into the background using control-Z.
Do this for several sessions. Type in some calculations into some of the
sessions and see if they reappear when you bring the bc session containing
that calculation into the foreground.

2. The bc calculator has variables which allow you to store numbers under
a name. These play the role of the symbols described in Chapter 0, but
they are limited to storing numbers. Here we show some variables being
created and some expressions being evaluated.

morrison@ghent:~$ bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.

19

This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
cow = 5
pig = 2
horse = 7
horse + cow
12
horse/pig
3
pig/horse
0
cow^horse
78125

Replicate this session. Put it into the background and bring it into the
foreground. Were your variables saved? Notice that this calculator does
integer arithmetic. The = sign you see is actually assignment, which was
discussed in Chapter 0.

3. Look at one of the algorithms for converting a binary number into a dec-
imal number described in Chapter 0. Can you step through the process
using bc and make it work?

9 Editing Files with vi

We can create �les with touch and use cp to copy them. How do we edit text
�les and place information in them? This is the role of the UNIX text editor, vi.
The O'Reilly book [?] on it comes highly recommended if you want to become a
power user (you do). A second text editor, emacs is also available. It is powerful
and extensible. Like vi it is a serious tool requiring serious learning, and like
vi there is an O'Reilly book on it, too. You may use emacs instead of vi if you
wish. Both of these are just tools for creating and editing text �les, and both
do a great job. You may create or modify any text �le with either program.
Ubuntu users can also use gedit or gvim, which have some nice advantages.

9.1 A Note for Ubuntu Users

Ubuntu by default installs the package vi-tiny. We want vi with all bells and
whistles. To get this, make sure you are connected to the Internet, then type
the following command in an terminal window.

$ sudo apt-get install vim

You will be asked to enter your password, then it will install the full vi package.
The sudo command tells Ubuntu you are behaving as a system administrator,

20

so you must enter your password to proceed. It will ask you to con�rm you wish
to install, and then it will download the package from the repositories, install,
and con�gure it for you. Ubuntu has lots of programs and packages that are
freely available, and you use sudo apt-get install to obtain them.

9.2 Launching vi

To create a new �le or open an existing �le, type

$ vi someFileName

at the UNIX command line. If the �le someFileName exists, it will be opened;
otherwise, it will be created. Now let us open the �le bar we created with touch.
You will see this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"bar" 0L 0C

21

DONOT TYPE YET! Read ahead so you avoid having a passel of confusing
annoying things plaguing you. The tildes on the side indicate empty lines; they
are just placeholders that are not a part of the actual �le. It is fairly standard for
the tildes to be blue. The OL OC "bar" indicates that �le bar has no lines and
no characters. If the �le bar were not empty, its contents would be displayed,
then blue tildes would �ll any empty screen lines.

9.3 vi Modes

Before you hit any keys there is something important to know. The vi editor
is a moded editor. It has four modes: command mode, visual mode, insert
mode, and replace mode. Command mode provides mobility, search/replace,
and copy/paste capabilities. Insert mode allows you to insert characters using
the keyboard. Visual mode provides the ability to select text using the keyboard,
and then change or copy it. Replace mode overwrites existing text with new
text. When you �rst open a �le with vi, you will be in command mode.

We will begin by learning how to get into insert mode. You always begin a
vi session in command mode. There are lots of ways to get into insert mode.
Here are a six basic ones that are most often used.

keystroke Action
i insert characters before the cursor
I insert characters at the beginning of the line
a append characters after the cursor
A append characters at the end of the line
o open a new line below the cursor
O open a new line above the cursor

Here is an easy way to remember. What happens if you accidentally step on
your cat's tail? He says IAO!!!

22

There is one way to get out of insert mode. You do this by hitting the
escape (ESC) key. Let's now try this out. Go into your �le bar and hit the i
key to enter text. Type some text. Then hit ESC. To save your current e�ort
type this anywhere:

:w

This will write the �le; a message will appear at the bottom of the window
indicating this has happened. Do not panic; that message is not a part of the
�le that is saved. To quit, type

:q

this will quit you out of the �le. You can type

:wq

to write and quit. The command :qw does not work for obvious reasons. You
have just done a simple vi session. You can reopen the �le bar by typing

$ vi bar

at the UNIX command line; the contents you last saved will be re-displayed.
You should take a few minutes to try all of the ways of getting into insert mode.
Change the �le and save it. Quit and display it to the screen with cat and
more.

At �rst, vi will seem clunky and awkward. However, as you ascend the
learning curve, you will see that vi is blazingly fast and very e�cient. One of
its great strengths is the ability to search for and replace text. As your skill
grows with it, you will see it is an amazing productivity tool.

A Reassuring Note If you are in command mode and hit ESC, your com-
puter will just beep at you. This is its way of letting you know you were already
in command mode. Nothing additional happens. If you are unsure what mode
you are in, hit ESC and you will be back in command mode, no matter what.
You can hit ESC and relax.

The �gure below will help you to remember the structure of vi. When you
�rst start editing a �le, you enter in in command mode. Typing i, a, o, I, A or
O all put you into insert mode. You can also see in the diagram how to get out
of insert mode by typing ESC.

|---
| command mode |

23

| ---------------i, a, o, I, A, O to get in----------- |
	insert mode:	
	insert characters	
	paste in text with GUI	
-----------------------------------ESC to get out---		
search, replace		
copy with yy, paste with p		
delete lines with dd		
all "colon commands" (commands that start with :)		
----------------------------------- --------------------------		

Let's go back in our �le now and learn some more useful commands. We will
look at command mode commands now.

Sometimes, line numbers will be helpful; these are especially useful when
you program. To see them, you get into command mode and type the colon

command :set number. Do this and watch them appear. Now type :set nonu
or :set nonumber and watch them disappear. Line numbers are not a part of
the �le; however, they are a helpful convenience.

Here are some useful command mode mobility features. Experiment with
them in a �le.

Command Action
: lineNumber Go to indicated line number.
� Go to the beginning of the current line.
$ Go to the end of the current line.
G Go to the end of the �le.
gg Go to the beginning of the �le; note that :1 also works.

These colon commands in this table will allow you to alter your editing
environment. The last two are useful editing tricks that are sometimes quite
convenient. Open a �le and try them all.

Command Action
:set number display line numbers
:set nonu get rid of line numbers
:set autoindent This causes vi to autoindent.
:set noautoindent This causes vi to turn o� autoindent.
r (then a character) replace character under cursor
~ change case upper → ;lower or lower → upper

9.4 Cut and Paste

The vi editor has a a space of memory called the unstable bu�er, which we
nickname Mabel. Mabel provides a temporary cache for holding things while

24

we are editing and she is very helpful for doing quick copy-paste jobs.

This bu�er is unstable because it loses its contents every time new text is
placed in it. Do not use it to store things for a long time; instead write those
things to �les and retrieve them later. You will learn several ways to do this.

We show here a table with some cut, copy, and paste commands you will
�nd helpful.

yy Yank line to Mabel
dd Delete line starting at the cursor; this

cuts to Mabel
dw Delete word; this cuts to Mabel
cw Delete word, then enter insert

mode(change word) The changed
word is cut to Mabel.

p Paste Mabel's contents at the cursor.
D Cut line at cursor; this cuts the stricken

text to Mabel
C Cut line at cursor and enter insert

mode; this cuts the stricken text to Ma-
bel

All of these commands can be preceded by a number, and they will happen
that number of times. For example typing 10yy in command mode will yank
ten lines, starting at the cursor, to Mabel. Since so many of these commands
place new text in Mabel, you should know that if you copy or cut to Mabel
and intend to use the text, paste it right away. You should open a �le and
experiment with these. Spend some time fooling around with this mechanism;
you will make some delightful discoveries, as well as dolorous ones.

9.5 Cutting and Pasting with External Files

You can select a range of line numbers before each of these commands, or select
in visual mode and use these commands.

:w fileName Write a copy of the entire the �le fileName
:w! fileName Write selection to existing �le fileName, and clobber it.
:w >> fileName Append selection to �le fileName.
:r fileName Read in �le fileName starting at the cursor

For example

:20,25 w foo.txt

25

will write lines 20-25 to the �le foo.txt. If you want to write the entire �le,
omit the line numbers and that will happen. If you want to write from line 20
to the end of the �le, the usage is as follows.

:20,$ w foo.txt

Note the use of $ to mean �end of �le.� When you learn about visual mode (just
ahead), you can use these command to act on things you select in visual mode
as well.

Housekeeping Tip If you use this facility, adopt a naming convention for
these �les you create on a short-term basis. When you are done editing, get rid
of them or they become a choking kudzu and a source of confusion in your �le
system. Use names such as buf, buf1, etc as a signal to yourself that these �les
quickly outlive their usefulness and can be chucked.

9.6 Searching and Substutiing

Finally we shall look at search capabilities. These all belong to command mode.
Enter

/someString

in command mode and vi will seek out the �rst instance of that string in the
�le or tell you it is not found. Type an n to �nd the next instance. Type N to
reverse direction. You can enter

?someString

to search for someString backwards from the cursor. Type n to �nd the previous
instance, and N to revese direction. Your machine may be con�gured to highlight
every instance of the string you searched for. If you �nd this feature annoying,
you can deactivate it with

:set nohlsearch

Now let us look at search and replace. This is done by a colon command
having this form.

:s/old/new/(g|c|i)

The s means substitute; this substitutes old for new. The three �ags at the end
specify how the substitution should work By default, substitutions are con�ned
to the cursor line, but you can control the scope of a substitution in these two
ways.

26

Bound Scope
a,b s/old/new/(g|c|i) Perform the substitution on lines a through b, inclusive.
a, $ Perform the substitution on line a until the bottom of the �le.

Here is how the �ags work. At the end you can append any of g, c, or i.
Here is a decoder ring.

c Check after each substitution to see if you want ot replace.
g Replaces all instances on each line. By default, only the �rst one is replaced.
i Replace old case-insensitive.

You will also learn how to control the scope of substitutions in visual mode
below. That method is extremely nice and quite simple to learn.

10 Visual Mode

The third mode of the vi editor, visual mode is actually three modes in one:
line mode, character mode, and block mode. To enter line mode from command
mode, hit V; to enter character mode hit v, and to enter block mode, hit Control-
v. You can exit any of these by hitting the ESC key; this places you back in
command mode. Visual mode has one purpose: it allows you to select text
using keyboard commands; you may then perform various operations on these
selections. First, let us see the selection mechanism at work.

Go into a �le and position your cursor in the middle of a line. Hit v to enter
visual character mode. Now use the arrow keys; notice how the selected text
changes in response to arrow key movement. Try entering gg and G and see
what happens. Hit ESC to �nish. Now enter visual mode and use the / search
facility to search up something on the page. What happens? Search backward
and try that too.

Now enter visual line mode by hitting V; now try the keystrokes we just
indicated and see how the selection behaves. This mode only selects whole
lines.

Finally if you enter Control-V and you enter visual block mode, you can
select a rectangular block of text from the screen by using the keyboard.

Now let's see what you can do with these selections. First let us look at
character and line mode, as block mode behaves a little di�erently. You can
delete the selected text by hitting d. You can yank it into Mabel by hitting y.
Upon typing either command, you will be put back into command mode. Once
any text is yanked into Mabel, you can paste it with p as you would any other

27

text yanked there. If you hit c, the selection will be deleted and you will be in
insert mode so you can change the text.

In block mode, things are a little di�erent. If you hit d, the selected block
will be deleted, and the lines containing it shortened. The stricken text is cut to
Mabel. If you hit y, the block will be yanked just as in any other visual mode,
and its line structure will be preserved. If you hit c, and enter text, the same
change will be made on all line selected provided you do not hit the ENTER
key. If you do, the change will only be carried out on the �rst line. You can
insert text rather than change by hitting I, entering your text, and then hitting
ESC. If the text you enter has no newline in it, the same text will be added to
each line; if it has a newline, only the �rst line is changed.

If you hit r then any character in any visual mode, all selected characters
are changed to that character.

Here is a very common use for character or line visual mode. Suppose you
are editing a document and the lines end in very jagged fashion. This sort of
thing will commonly happen when maintaining a web or if you are editing a
LATEXdocument such as this one, where the page that is subjected to repeated
edits. Use visual mode to select the a�ected paragraphs and hit gq (think
Gentleman's Quarterly) and your paragraphs will be tidied up.

You can also do search-and-replace using visual mode to select the text to
be acted upon. Simply select the text in visual mode. Then hit

: s/outText/inText/g

to perform the substitution in the selected text. For example if you select text
in visual mode and change every w to a v, you will see this.

:'<,'>s/w/v/g

The <,'> is a quirky way of indicating you are doing a visual-mode search-
replace operation.

10.1 Replace Mode

In vi if you hit r then a character, the character under the cursor is replaced
with the character you it. If you hit R, you are in replace mode, and any test
you type �overruns� existing text. Experiment with this in a �le you don't care
about.

Replace mode is fabulous for making ASCII art such as this.

< Galactophagy >

28

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

You should play around with this. Do a Google search to learn about ASCII
art.

11 Copy Paste from a GUI

You can copy and paste with the mouse in a window or between windows. The
way you do it varies by OS so we will quickly discuss each. If you are pasting
into a �le you are editing with vi, it is a smart idea to use the colon command
:set paste. This will prevent the �mad spraying� of text. For certain types
of �les, this turns o� automatic indentation or formatting. You can use :set
nopaste to turn o� the paste mode.

Windoze If you are copying from a Windoze application into a terminal win-
dow, select the text you want to copy and use control-C in the usual way. This
places the text in your Windoze system clipboard. Now go into your terminal
window and get into insert mode where you want to paste. It is also wise, in
command mode, to enter :set paste. Right-click to paste the contents of your
system clipboard into the terminal window. Many of you will say, �Why did the
beginning of the text I copied get cut o� or why didn't it appear at all?� This
will occur if you are not in insert mode when you paste. It is important to be
in insert mode before pasting to avoid unpleasant surprises. If this happens, hit
ESC then u in command mode. The u command undoes the last vi command.
Then you can take a fresh run at it.

If you are copying from a terminal window, select the text you wish to copy;
PuTTY will place the text in your system clipboard. Then go into the window
in which you wish to paste it. If the window is another terminal, get into insert
mode and right-click on the mouse. If it's a Windoze app, use control-V as you
usually do.

Mac Use apple-c to copy and apple-v to paste to or from a terminal window,
just as you would with any other mac app. Mac gets this right.

Linux If you use a Linux box, use control-shift-C for copying in terminal
windows and control-shift-V for pasting to terminal windows.

29

A Reprise: A Warning About autoindent and paste Before pasting
with the mouse make sure you have autoindent turned o�. Otherwise, your text
will �go mad and spray everywhere,� especially if you are copying a large block
of text with indents in it. You can turn autoindent on with :set autoindent
and o� with :set noautoindent. This feature can be convenient when editing
certain types of �les. You can use the command :set paste to turn o� all
smart indentation; when �nished use :set nopaste to set things back to their
original state.

A Warning abut Line Numbers If you copy-paste to a GUI, line numbers
will get copied. To prevent this from happening, use the colon command :set
nonu before copying.

Experiment with these new techniques in some �les. Deliberately make
mistakes and see what happens. Then when you are editing �les, you will know
what to expect and how to recover.

There are a lot of excellent tutorials on vi on the web; avail yourself of these
to learn more. Remember the most important thing: you never stop learning
vi! Here are some useful vi resources on the web.

� The site [?] for is complete, organized and well-written. You can download
the whole shebang in a PDF. Read this in little bits and try a few new
tricks at a time.

� The site [?], vi for Smarties will introduce you to vi with a bit of churlish
sneery attitude. It's pretty cool. And it's sneery like the author of this
august volume.

� The link ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf will
download The Vim book for you. It is a very comprehensive guide, and it
has excellent coverage on the visual mode.

11.1 Permissions

Now we will see how you can use permissions to control the visibility of your
�les on the system. You are the owner of your home directory and all directories
and �les it contains. This is your �subtree� of the system's directories belonging
to you. You may grant, revoke or con�gure permissions for all the �les and
directories you own as you wish. UNIX was designed with the fundamental idea
that your data are your property, and you can control what others see of them.

There are three layers of permission: you, your group, and others. You is
letter u, your group is letter g and others is letter o. There are three types of
permission for each of these: read, write and execute. Read means that level can
read the �le, write means that level can execute the �le, and execute means that

30

level can execute the �le. In the example above, the �le bar has the permission

string

-rw-rw-r--

which means the following.

� You can read or write to the �le. You cannot execute.

� Your group can read or write but not execute.

� The world can read this �le but neither write nor execute.

For the user to execute this �le, use the chmod command as follows

$ chmod u+x bar

The u(ser's, that's you) permission changed to allow the user to execute the �le.

If you do not want the world to see this �le you could enter

$ chmod o-r bar

and revoke permission for the world to see the �le bar. Since you are the owner
of the �le, you have this right. In general you can do

$ chmod (u or g or o)(+ or -)(r or w or x) fileName

to manage permissions. You can omit the u, g or o and the permission will be
added or deleted for all three categories. In the next subsection, we discuss the
octal representation of the permissions string. This will allow you to change all
three levels of permissions at once quickly and easily.

12 The Octal Representation for Permissions

There is also a numerical representation for permissions. This representation
is a three-digit octal (base 8) number. Each permission has a number value as
follows.

� The permission r has value 4.

� The permission w has value 2.

� The permission x has value 1.

� Lack of any permission has has value 0.

31

We show how to translate a string in this example.

-rw-r--r--
6 4 4

The only way to get a sum of 6 from 1,2 and 4 is 4 + 2. therefore 6 is read-
write permission. The string translates into three digits 0-7; this �le has 644
permissions. It is a simple exercise to look at all the digits 0-7 and see what
permissions they convey.

We show some more examples of chmod at work. Look at how the permis-
sions change in response to the chmod commands. Suppose we are a directory
containing one �le named empty, which has permission string extt -rw-r�r�, or
644. We begin by revoking the read permission from others.

$ chmod o-r empty

We now list the �les in the directory

$ ls -l
total 0
-rwxr----- 1 morrison morrison 0 2008-08-26 10:52 empty
$ ls
empty

We can now restore the original permissions all at once by using the octal
number representation for our permissions.

chmod 644 empty
$ ls -l
total 0
-rw-r--r-- 1 morrison morrison 0 2008-08-26 10:52 empty

Notice what happens when we try to use a 9 for a permission string.

$ chmod 955 empty
chmod: invalid mode: `955'
Try `chmod --help' for more information.

Try typing the chmod �help command at your prompt and it will show you some
useful information about the chmod command. Almost all UNIX commands
have this help feature.

Directories must have executable permissions, or they cannot be entered, and
their contents are invisible. Here we use the -a option on ls. Notice that the

32

current working directory and the directory above it have execute permissions
at all levels. Try revoking execute permissions from one of your directories and
attempt to enter it with cd; you will get a Permission Denied nastygram from
the operating system.

$ ls -al
total 20
drwxr-xr-x 2 morrison faculty 4096 2008-10-17 11:51 .
drwx--x--x 9 morrison faculty 4096 2008-10-16 08:39 ..
-rw-r--r-- 1 morrison faculty 0 2008-10-17 11:51 empty
$

Here we shall do this so you can bear witness

$ mkdir fake
$ chmod u-x fake
$ cd fake
bash: cd: fake: Permission denied
$

Assigning 600 permissions to a �le is a way to prevent anyone but yourself
from seeing or modifying that �le. It is a quick and useful way of hiding things
from public view. Later, when you create a web page, you can use this command
to hide �les in your website that you do not want to be visible.

13 The Man

The command man is your friend. Type man then your favorite UNIX command
to have its inner secrets exposed! For example, at the UNIX prompt, enter

$ man cat

This brings up the man(ual) page for the command cat. A complete list of
options is furnished. Notice that some of these have the �, or long form.

CAT(1) User Commands CAT(1)

NAME
cat - concatenate files and print on the standard output

SYNOPSIS
cat [OPTION] [FILE]...

33

DESCRIPTION
Concatenate FILE(s), or standard input, to standard output.

-A, --show-all
equivalent to -vET

-b, --number-nonblank
number nonblank output lines

-e equivalent to -vE

-E, --show-ends
display $ at end of each line

-n, --number
number all output lines

-s, --squeeze-blank
never more than one single blank line

-t equivalent to -vT

-T, --show-tabs
display TAB characters as ^I

-u (ignored)

-v, --show-nonprinting
use ^ and M- notation, except for LFD and TAB

--help display this help and exit

--version
output version information and exit

With no FILE, or when FILE is -, read standard input.

EXAMPLES
cat f g

Output f's contents, then standard input,
then g's contents.

cat Copy standard input to standard output.

AUTHOR
Written by Torbjorn Granlund and Richard M. Stallman.

34

REPORTING BUGS
Report bugs to <bug-coreutils@gnu.org>.

COPYRIGHT
Copyright Â© 2006
Free Software Foundation, Inc.
This is free software. You may redistribute
copies of it under the terms of the GNU General
Public License <http://www.gnu.org/licenses/gpl.html>.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
The full documentation for cat is maintained
as a Texinfo manual. If the info and cat
programs are properly installed at your site,
the command info cat should give you access
to the complete manual.

cat 5.97 August 2006 CAT(1)

You can see here that even humble cat has some options to enhance its
usefulness. Here is cat at work on a �le named trap.py.

$ cat trap.py
def trap(a, b, n, f):

a = float(a)
b = float(b)
h = (b - a)/n
list = map(lambda x: a + h*x, range(0,n+1))
tot = .5*(f(a) + f(b))
tot += sum(map(f, list[1:n]))
tot *= h

return tot
def f(x):

return x*x
print trap(0,1,10,f)
print trap(1,2,100,f)

Using the -n option causes the output to have line numbers.

cat -n trap.py
1 def trap(a, b, n, f):
2 a = float(a)
3 b = float(b)
4 h = (b - a)/n

35

5 list = map(lambda x: a + h*x, range(0,n+1))
6 tot = .5*(f(a) + f(b))
7 tot += sum(map(f, list[1:n]))
8 tot *= h
9 return tot

10 def f(x):
11 return x*x
12 print trap(0,1,10,f)
13 print trap(1,2,100,f)

$

View the manual pages on commands such as rm, ls chmod and cp to learn
more about each command. Experiment with the options you see there on some
junky �les you create and do not care about losing.

Exercises

1. Use the man command to learn about the UNIX commands more and less.
You will see here, that in fact, less is more!

2. Use the man command to learn about the UNIX commands head and tail.
Can you create a recipe to get the �rst and last lines of a �le?

3. What does the ls -R command do?

14 Lights, Camera, Action! Where's the Script?

Sometimes you will �nd yourself doing certain chores repeatedly. An intelligent
question to ask is, �Can't I just save this list of commands I keep typing over
and over again in a �le?�

Happily, the answer to this is �yes.� It's called writing a shell script. In its
simplest form, a shell script is just a list of UNIX commands in a �le. We will
see how to make one of these and run it. Begin by creating this �le, greet.sh.

#!/bin/bash
echo Hello, $LOGNAME!
echo Here is the calendar for this month:
cal

Type commands you see in this �le into your shell. You will see this.

unix> echo Hello, $LOGNAME!
Hello, morrison!
unix> echo Here is the calendar for this month:

36

Here is the calendar for this month:
unix> cal

January 2020
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Now give this �le execute perimssions like so.

unix> chmod +x greet.sh

Now run it (note the slash-dot).

unix> ./greet.sh
Hello, morrison!
Here is the calendar for this month:

January 2020
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

We can make this process even better. If you don't have one, create a directory
named bin in your home directory. Then open the dot�le .bash_profile and
add this line to it.

export PATH=$PATH:"/Users/morrison/bin"

Replace the /Users/morrison with the path to your home directory. Put your
shiny new script into this directory. Then you don't need the slash-dot any
more unless you are in the bin directory. This has the bene�t of allowing you
to run the script from anywhere in the �le system.

15 Redirection of Standard Output and Standard

Input

UNIX treats everything in your system as a �le; this includes all devices such as
printers, the screen, and the keyboard. Things put to the screen are generally

37

put to one of two �les, stdout, or standard output and stderr, or standard
error. You will see that it is veryeasy to redirect standard output to a another
�le.

The keyboard, by default, is represented by the �le stdin, or standard

input. It is also possible to redirect standard input and take standard input
from a �le.

UNIX �lters, such as cat and more have as their default input stdin and
as output stdout. This section will show you how to redirect these to �les.

Sometimes a UNIX command or a program puts a large quantity of text to
the screen; redirection allows you to capture the results into a �le. You can
open this �le with vi, search it, or edit it. The examples here are based on the
�les animalNoises.txt; make them and follow along.

miao
bleat
moo

and physics.txt

snape
benettron
stephan

First we show how cat puts �les to stdout.

$ cat animalNoises.txt physics.txt
miao
bleat
moo
snape
benettron
stephan

Now let us capture this critical information into the �le stuff.txt by redi-
recting stdout. We then use cat to display the resulting �le to stdout.

$ cat animalNoises.txt physics.txt > stuff.txt
$ cat stuff.txt
miao
bleat
moo
snape
benettron
stephan

38

The cat command has a second guise. It accepts a �le name as an argument,
but it will also accept standard input; this is no surprise since stdin is treated
as a �le. At the UNIX command line enter

$ cat

The cat program is now running and it awaits word from stdin. Enter some
text and then hit the enter key; cat echoes back the text you type in. To �nish,
hit control-d (end-of-�le).

$ cat
me too
me too
ditto
ditto
$

The control-d puts no response to the screen. You can also put a �le to the
screen with

$ cat < someFile

Here, the �le someFile becomes stdin for the cat command. This phenomenon
is shown in the man page for cat. Under the description of the command it
says, � Concatenate FILE(s), or standard input, to standard output.�

Let us now come back to stdout. Next create a new �le named sheck.txt
with these contents.

roach
stag beetle
tachnid wasp

Were we to invoke the command

$ cat animalNoises.txt physics.txt > sheck.txt

we would clobber the �le sheck.txt and lose its valuable contents. This may
be our intent; if so very well. If we want to add new information to the end of
the �le we use the >> append operator to append it to the end of the receiving
�le. If we do this

$ cat animalNoises.txt physics.txt >> sheck.txt

we get the following result if we use the original �le sheck.txt.

39

$ cat sheck.txt
roach
stag beetle
tachnid wasp
miao
bleat
moo
snape
benettron
stephan

The >> redirection operator will automatically create a �le for you if the �le to
which you are redirecting does not already exist.

16 More UNIX Filters

It is very common to want to use stdout from one command to be stdin for
another command. This will grant us the ability to chain the actions of the
existing �lters we have cat, more and less with some new �lters to do a wide
variety of tasks To achieve this tie, we use a device called a pipe. Pipes allow
you to chain the action of various UNIX commands. We shall add to our palette
of UNIX commands to give ourselves a larger and more interesting collection of
examples. These commands are extremely useful for manipulating �les of data.

16.1 The sort �lter

Bring up the man page for the command sort. This command accepts a �le (or
stdin) and it sorts the lines in the �le.

This begs the question: how does it sort? It sorts alphabetically in a case-
insensitive manner, and it �alphabetizes� non-alphabetical characters by ASCII
value. The sort command several four helpful options.

-b �ignore-leading-blanks ignores leading blanks
-d �dictionary-order pays heed to alphanu-

meric characters and
blanks and ignores
other characters

-f �ignore-cases ignores case
-r �reverse reverses comparisons

Here we put the command to work with stdin; use a control-d on its own
line to get the prettiest format. Here we put the items moose, jaguar, cat

40

and katydid each on its own line into stdin. Without comment, a sorted list
is produced.

$ sort -f
moose
jaguar
cat
katydid (now hit control-d)
cat
jaguar
katydid
moose
$

You should try various lists with di�erent options on the sort command to see
how it works for yourself. You can also run sort on a �le and send a sorted
copy of the �le to stdout. Of course, you can redirect this result into a �le
using > or �.

16.2 The Filters head, tail, and uniq

The commands head and tail put the top or bottom of a �le to stdout; the
default amount is 10 lines. To show the �rst 5 lines of the �le foo.txt, enter the
following at the UNIX command line.

$ head -5 foo.txt

You can do exactly the same thing with tail with an entirely predictable
result. The command uniq weeds out consecutive duplicate lines in a �le, leaving
only the �rst copy in place. These three commands have many useful options;
explore them in the man pages.

16.3 The grep Filter

This command is incredibly powerful; here we will just scratch the surface of
its protean powers. You can search and �lter �les using grep; it can be used to
search for needles in haystacks. In its most basic form grep will inspect a �le
line-by-line and put all lines to stdout containing a speci�ed string. Here is a
sample session.

$ grep gry /usr/share/dict/words
angry
hungry
$

41

The �le /usr/share/dict/words is a dictionary �le containing a list of words,
one word to a line in (mostly) lower-case characters. Here we are searching the
dictionary for all lines containing the character sequence gry; the result is the
two words angry and hungry. There are options -f and �ignore-case to ignore
the case of alphabetical characters.

16.4 Serving up Delicious Data Piping Hot

Pipes allow you to feed stdout from one command into stdin to another with-
out creating any temporary �les yourself. Pipes can be used along with redirec-
tion of stdin and stdout to accomplish a huge array of text-processing chores.

Now let us do a practical example. Suppose we want to print the �rst 5 lines
alphabetically in a �le named sampleFile.txt. We know that sort will sort the
�le asciicographically; we will use the -f option to ignore case. The command
head -5 will print the �rst �ve lines of a �le passed it or the �rst �ve lines of
stdin. So, what we want to do is sort the �le ignoring case, and pass the result
to head -5 to print out the top �ve lines. You join two processes with a pipe; it
is represented by the symbol | , which is found by hitting the shift key and the
key just above the enter key on a standard keyboard. Our command would be

$ sort -i sampleFile.txt | head -5

The pipe performs two tasks. It redirects the output of sort -f into a tempo-
rary bu�er and then it feeds the contents of the bu�er as standard input to head
-5. The result: the �rst �ve lines in the alphabet in the �le sampleFile.txt
are put to stdout.

Suppose you wanted to save the results in a �le named results.txt. To do
this, redirect stdout as follows

$ (sort -i sampleFile.txt | head -5) > results.txt

Note the use of defensive parentheses to make our intent explicit. We want the
�ve lines prepared, then stored in the �le results.txt.

Programming Exercises Here are two more �lters, wc and a command echo.
You will use the man pages to determine their action and to use them to solve
the problems below.

1. Tell how to put the text �Cowabunga, Turtle soup!� to stdout.

2. Tell how to get the text �This is written in magic ink� into a text �le
without using a text editor of any kind.

42

3. The ls command has an option -R, for �list �les recursively.� This lists
all of the sub-directories and all of their contents within the directory
being listed. Use this command along with grep to �nd a �le containing
a speci�ed string in a �le path.

4. Put a list of names in a �le in lastName, �rstName format. Put them in
any old order and put in duplicates. Use pipes to eliminate duplicates in
this �le and sort the names in alphabetical order.

5. Find the word in the system dictionary occupying line 10000.

6. How do you count all of the words in the system dictionary containing the
letter x?

7. Find all words in the system dictionary occupying lines 50000-50500.

8. Tell how, in one line, to take the result of the previous exercise, place it
in reverse alphabetical order and store in in a �le named myWords.txt.

43

	Introduction
	In the Beginning …
	The Anatomy of a UNIX Command
	Managing Directories
	Processes and Directories

	Paths
	 A Field Trip
	Making and Listing Regular Files
	 Renaming and Deleting Files
	Everything is a Computer Program

	Editing Files with vi
	A Note for Ubuntu Users
	Launching vi
	vi Modes
	Cut and Paste
	Cutting and Pasting with External Files
	Searching and Substutiing

	Visual Mode
	Replace Mode

	Copy Paste from a GUI
	Permissions

	The Octal Representation for Permissions
	The Man
	Lights, Camera, Action! Where's the Script?
	Redirection of Standard Output and Standard Input
	More UNIX Filters
	The sort filter
	The Filters head, tail, and uniq
	The grep Filter
	Serving up Delicious Data Piping Hot

