
1 Introduction

You will learn enough about complex numbers in this article to complete the
programs Complex.java and CMath.java. No specfic knowledge of complex
arithmetic or complex functions is assumed. Everything will be done from
scratch.

You are assumed to know about real numbers and their arithmetic. We will
realize the complex numbers as an extension of the real numbers. They will have
the four basic operations of arithmetic, addition, subtraction, multiplication,
and division.

2 Extension and Number Systems

When you first learned about numbers from Mrs. Wormwood, you learned about
the natural numbers N; these are the positive counting numbers {1, 2, 3, 4, .....}.
You learned about the operaton of addition, first by using your fingers, then by
using the efficient ripple-carry algorithm which looks like this.

1 1

6322

+4382

----

10704

Also, you learned how to subtract natural numbers first by using your fingers,
then by using the “borrowing” method. For quite some time, you were steered
around mysteries such as 3 − 8. At some juncture, you were introduced to
negative numbers and you saw that 3−8 = −5. This gave you signed arithmetic
and introduced you to the set of all integers

Z = {· · · − 2,−1, 0, 1, 2, . . . }.

The integers behave nicely with +, - and *: the product, difference and sum
of integers is yet another integer. This property is called closure; the integers
are closed under +, - and *. More generally, if f is a polynomial with integer
coefficients and a ∈ Z, f(a) ∈ Z.

Unfortunately, the integers are not closed under exact division, although
they are closed under integer division. This brings us to and extension of the
integers, the rational numbers, which are known by the symbol Q, for “quotient.”

The rules for arithmetic were then exteneded again by Mrs Wormwood to
work for fractions. You have closure under division in the rationals, save for the
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special case of 0; this number cannot be a divisor of anything but itself. With
the rationals, you can solve any equation of the form

ax+ b = 0,

provided that a 6= 0. All linear equations in the rationals become solvable, unless
they are of the form x = a, where a is some nozero number.

Consider the modest equation

x2 = 2.

Can we solve this in the rationals? Suppose we can; the solution must be of the
form

x =
p

q

where p and q are positive integers. Moreover, we can take this fraction to be
in lowest terms. If this is so, we have

p2

q2
= 2.

Thus, p2 = 2q2, so 2 divides p2 evenly. But 2 is prime, so we must have that 2
divides p evenly. Hence, 4 divides p2. Since p2 = 2q2, 2 must divide q2 evenly.
We are cooked: we just showed that 2 is a factor of p and q, violating the premise
that p/q be in lowest terms. No rational solution to the equation is possible.
Again, we wish to extend our notion of number.

What we would like is for the real numbers to be realizable as a geometric
line. This is certainly true for

√
2. You can construct this length with a compass

and ruler. Just make two perpendicular lines and mark off one unit from the
intersection. Now draw the square described by this process; its diagonal by
the Pythagorean theorem is of length

√
2. This process of completion to a line

gives us the real numbers R. The actual construction of the real numbers is a
hairy complex process. But it gives the real numbers the properties that make
calculus go.

This brings us to another mystery. The geometric series theorem says that
if x is a real number and if x 6= 1, then

n∑
k=0

xk =
xn+1 − 1

x− 1
.

Now suppose that |x| < 1. Then xn → 0 as n → ∞. Taking the limit on both
sides of the previous equation yields

∞∑
k=0

xk =
−1

x− 1
=

1

1− x
.
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So far all looks innocent. However, we can perform a little substitution of −x2
for x to get

∞∑
k=0

(−1)kx2k =
1

1 + x2
|x| < 1.

This works; you can do a little programming experiment in Python to see it.
Draw the graph of the function x 7→ (1/(1 + x2). It is a nice bell-shaped affair.
Nothiing blows up, but the series for some mysterious reason behaves badly
if |x| ≥ 1. Exactly what sort of chicanery is going on here? Things like this
happen for reasons!

Whatever could be lurking? Take some derivatives and see that

f ′(x) = − 2x

(1 + x2)2

and

f ′′(x) =
1− 3x2

(1 + x2)3
.

These functions are well mannered, and the denominators are bounded below
by 1, so this trail offers nary a hint. Uh oh. Dead end. But there is a nub; the
polynomial x2 + 1 has no roots. Mathematically we say the real numbers are
not algebraically complete; there are polynomials with real coefficients lacking
real roots. Perhaps if we could extend the real numbers in such a way that this
polynomial has a root, the mystery might reveal itself.

3 A New Number System

We are going to extend the real numbers with a new set of objects called complex
numbers. A complex number is a symbol of the form a+ bi, where a, b ∈ R; the
totality of these objects is denoted by C. We are going to define the operations
of arithmetic on these objects. You will program in in Java and create this
number system as a new data type.

If a and b are real, and z = a + bi, we say that a is the real part of z and
denote it by <(z), and that b is the imaginary part of z and denote it by Im(z).
We say two complex numbers are equal if their real parts and imaginary parts
are equal.

3.1 The Plane Facts

It is easy and useful to represent the complex numbers as points in the plane.
If z = a+ bi, and a, b ∈ R, we shall represent it as the point (a, b) in the plane.
In this plane, the x–axis is is the set of all complex numbers whose imaginary
parts are zero.
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Every real number a can be thought of as complex number by writing a+ i0.
We will make this association without further remark. In particular, the zero
for addition is 0 + 0i, which we will henceforth know as 0. This is exactly what
happens when we think of the x–axis in the complex plane as being a copy of
the real numbers.

For this reason the x–axis also called the real axis. Likewise, the y–axis is
called the imaginary axis.

As we develop the complex numbers, this planar representation will bring
some interesting geometric meaning to addition and multiplication. This ge-
ometric relationship will be key to sovling the mystery of the stopping power
series.

3.2 Adding Complex Numbers

We begin by defining addition; to do so we insist that non-i terms and i terms
are unlike and we add them algebraically. For example,

(1 + 4i) + (5− 2i) = 6 + 2i.

It is not difficult to check that this operation is commutiative and associative.

If you have seen vectors before, this form of addition is just vector addition.
You can think of a complex number as a planar vector.

If you have not seen vectors before, here are the essentials. A vector is a
directed line segment, which simply meands it is a line segment with labeled
ends. The best way to think of this is that a vector is an arrow with a head and
a tail. The complex number z = a+bi can be thought of as an arrow with its tail
at the origin and its head at the point (a, b). This vector represents displacement
by a units horizontally and b units vertically. If you look in a Physics book, you
will see this vector denoted by ai+ bj, where i represents one horizontal unit of
displacement and j represents one vertical unit of displacment.

Every complex number a + bi has an additive inverse which is −a − bi. If
z = a+ bi, then we will write −z for −a− bi. You will notice that if your think
of z as a vector, then −z is just the vector pointing in the opposite directon of
z with the same length.

Subtraction is defined as follows. If z, w ∈ C, then we define

z − w = z + (−w).

Happily, this enterprise just boils down to subtracting and combining like terms
algebraically. Be careful when computing z − w to distribute the − to both
terms of w.
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3.3 Addition and Geometry

Suppose that z, w ∈ C. Think of them as vectors with their tails at the origin.
You can see that they span a parallelogram. (Draw one!) Now imagine taking
the tail of z and dragging it to the head of w. This will form one side of the
spanning parallelogram. Now do the reverse: drag the tail of w and stick it on
the head of z. The result of doing either puts the head of the second vector at
the same point! Draw a new vector from the origin to this point; this is z + w.
Notice how this supplies a geometric interpretation to addition. This is what is
commonly known as the parallelogram law.

3.4 Argument

If z ∈ C is nonzero, we define the argument of z, Arg(z) to be the angle in
(−π, π] between the real axis and z created when z is realized as a vector, and
placed at the origin. For example,

Arg(1 + i) = π/4

since 1+i is one-eighth of a circle from from the real axis in the counterclockwise
direction. Likewise,

Arg(1− i) = −π/4.
Observe that for any positive real number z in the complex plane, Arg(z) = 0
and if z is real and negative, Arg(z) = π.

3.5 Multiplication, Conjugation, and Integer Powers

Now comes multiplication. We will first define i ∗ i = −1. Now we shall extend
this to any complex numbers by saying that the distributive law (and therefore
the FOIL rule) works. This suffices. Notice what happens when we multiply
two complex numbers. If z = a+ bi and w = c+ di, then

zw = (a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + i(ad+ bc).

Multiplication is commutative, associative and enjoys the distributive property.
Its neutral element is 1 = 1 + 0i.

Finally, we must determine if every complex number has a multiplicative
inverse. To this end, we first make a helpful definition. If z = a + bi, then we
define the conjugate of z by z = a− bi. Observe that in this case,

zz = (a+ bi)(a− bi) = a2 − b2i2 = a2 + b2.

You should notice that
√
zz is the planar distance from z to the origin.

We will therefore define the absolute value of a complex number z by |z| =√
zz. This is the distance from the origin to the complex number. It is exactly
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the same thing as the magnitude of a planar vector. We then define the distance
between z, w ∈ C by

d(z, w) = |z − w|.

This is just the planar distance between z and w.

3.6 Division

Let us begin by seeing that any nonzero complex number has a multiplicative
inverse. Let z ∈ C be nonzero. Then |z| > 0. We will now show that

w =
z

|z|2

is a multiplicative inverse for z. To see this, just multiply as follows

zw = z · z

|z|2
=

zz

|z|2
= 1.

Now suppose z = a+ bi. then

1

z
=

z

|z|2
=

a− bi
a2 + b2

=
a

a2 + b2
− i · b

a2 + b2
.

Since z 6= 0, you can be assured that a2 + b2 > 0, so the expression has no
possibility of a division by zero.

We can now define positive integer powers just as you might expect, and we
can define for any positive integer n,

z−n =
1

zn
=

(
1

z

)n
.

Now, all of the rational functions we know from the real domain can be extended
to the complex numbers. Let us now return to the mysterious stoppage of
convergence we saw before.

3.7 Mystery Solved

We saw that
1

1 + x2
=

∞∑
n=0

x2n, −1 < x < 1.

The geometric series theorem works in the complex case just as for the real one;
to wit

1

1 + z2
=

∞∑
n=0

z2n, |z| < 1.
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Next observe that z2 + 1 = (z− i)(z+ i); this tells us that the rational function
z 7→ 1/(z2 + 1) blows up at z = ±i. It is no conincidence that the real verson
on the series stops converging for x with |x| ≥ 1. The distance from ±i to the
origin is 1. This series actually converges in the biggest domain possible for it.

3.8 Is another extension needed here?

In short, no. The fundamental theorem of algebra states that all complex poly-
nomials factor into linear factors.

4 Complex Functions

The most important complex function outside of the rational functions is the
exponential function, which is defined by

ez = exp(z) =

∞∑
n=0

zn

n!
, z ∈ C.

This infinite sum converges for any complex number since the terms go to zero
faster than any exponential function of n, no matter the choice of z.

There is an interesting cyclic pattern for powers of i which will now come
into play. We can easily see that i4 = i2 · i2 = (−1)(−1) = 1. The powers of i
repeat cyclically every 4th power.

We have that i2k = (−1)k and i2k+1 = i2ki = (−1)ki. This works for any
integer k.

Suppose that t ∈ R. Then we have

eit =

∞∑
n=0

(it)n

n!
=

∞∑
n=0

(it)2k

(2k)!
+

∞∑
n=0

(it)2k+1

(2k + 1)!

This holds because we sum the even and odd terms separately. Now let us take
advantage of what we know about powers of i to see that

eit =

∞∑
n=0

(it)2k

(2k)!
+

∞∑
n=0

(it)2k+1

(2k + 1)!
=

∞∑
n=0

(−1)k

(2k)!
+ i

∞∑
n=0

(−1)kt2k+1

(2k + 1)!
.

This is the famous Euler Theorem, which says

eit = cos(t) + i sin(t).

Hence, if z = a+ ib,

ez = ea+ib = eaeib = ea(cos(b) + i sin(b)).
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From this the pair of relationships

eiz = cos(z) + i sin(z)

and
e−iz = cos(−z) + i sin(−z)− cos(z)− i sin(z).

Now add and you can see that

2 cos(z) = eiz + e−iz,

so that

cos(z) =
eiz + e−iz

2
.

Likewise, if you subtract you see that

sin(z) =
eiz − e−iz

2i
.

4.1 Some Consequences

In the real domain, we know that the exponential function is increasing, and
it is therefore 1-1. It has an inverse, called the (natural) log function. In the
complex domain, we have the following.

ez+2iπ = eze2iπ = ez(cos(2π) + i sin(2π) = ez.

The complex exponential function is periodic with period 2iπ. It is not 1-1 so
there is not a cleanly defined log function on the complex plane.

It is also interesting to notice that for any t ∈ R,

|eit|2 = cos2(t) + sin2(t) = 1.

The function t 7→ eit maps the real line onto the unit circle by sketching it
out counterclockwise. This function has a period of 2π, so the interval (−π, π]
constitutes one trip around the unit circle.

As a result every complex number z can be written as

z = reit,

where r = |z| and t ∈ (pi, π]. If z 6= 0, we have r > 0 so we can write

z = elog(r) + eit = elog(r)+it.

The quantity log(r)+it is called the principal branch of the logarithm in the com-
plex plane. You should also notice that in this case, t = Arg(z). We henceforth
define

Log(z) = log|z|+ iArg(z).

If w ∈ C, then we can define

zw = ewLog(z).
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