import java.util.ArrayList; import java.math.BigInteger; public class Loopy { public static void main(String[] args) { //test your stuff here. } /** * produce a table of values for the square function starting * at start, ending before end, and whhich increments the x-value * by increment. Return this in a string. */ public static String tableOfSquares(double start, double end, double increment) { return ""; } /** * @param roster a list of email names * @return an ArrayList of names in the first half of the alphabet, case insensitive */ public static ArrayList firstHalf(ArrayList roster) { return null; } /** * @param roster a list of email names * This has the side-effect of filtering in all elements in the * first half of the alphabet, case insensitive. */ public static void firstHalfInPlace(ArrayList roster) { } /** * @param n the size of the population * @param k the size of the sample * @return the number of ordered samples of size k * in the population. This is n(n-1)(n-2)..... (n-k+1). */ public static BigInteger permutations(int n, int k) { return null; } /** * @param n the size of the population * @param k the size of the sample * @return the number of ordered samples of size k * in the population. This is * n(n-1)(n-2)..... (n-k+1)/k!. * Be smart: the product of any k consecutive integers * is divisible by k. You should be able to compute * choose(1000000000, 3). hint: ZIPPER */ public static BigInteger choose(int n, int k) { return null; } }