
109

C H A P T E R 5
Generics

IN release 1.5, generics were added to Java. Before generics, you had to cast
every object you read from a collection. If someone accidentally inserted an object
of the wrong type, casts could fail at runtime. With generics, you tell the compiler
what types of objects are permitted in each collection. The compiler inserts casts
for you automatically and tells you at compile time if you try to insert an object of
the wrong type. This results in programs that are both safer and clearer, but these
benefits come with complications. This chapter tells you how to maximize the
benefits and minimize the complications. For a more detailed treatment of this
material, see Langer’s tutorial [Langer08] or Naftalin and Wadler’s book
[Naftalin07].

Item 23: Don’t use raw types in new code

First, a few terms. A class or interface whose declaration has one or more type
parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, as of
release 1.5, the List interface has a single type parameter, E, representing the ele-
ment type of the list. Technically the name of the interface is now List<E> (read
“list of E”), but people often call it List for short. Generic classes and interfaces
are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the
class or interface name followed by an angle-bracketed list of actual type parame-
ters corresponding to the generic type’s formal type parameters [JLS, 4.4, 4.5].
For example, List<String> (read “list of string”) is a parameterized type repre-
senting a list whose elements are of type String. (String is the actual type
parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic
type used without any accompanying actual type parameters [JLS, 4.8]. For exam-

CHAPTER 5 GENERICS110

ple, the raw type corresponding to List<E> is List. Raw types behave as if all of
the generic type information were erased from the type declaration. For all practi-
cal purposes, the raw type List behaves the same way as the interface type List
did before generics were added to the platform.

Before release 1.5, this would have been an exemplary collection declaration:

// Now a raw collection type - don't do this!

/**
* My stamp collection. Contains only Stamp instances.
*/
private final Collection stamps = ... ;

If you accidentally put a coin into your stamp collection, the erroneous insertion
compiles and runs without error:

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin(...));

You don’t get an error until you retrieve the coin from the stamp collection:

// Now a raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext();) {

Stamp s = (Stamp) i.next(); // Throws ClassCastException
... // Do something with the stamp

}

As mentioned throughout this book, it pays to discover errors as soon as pos-
sible after they are made, ideally at compile time. In this case, you don’t discover
the error till runtime, long after it has happened, and in code that is far removed
from the code containing the error. Once you see the ClassCastException, you
have to search through the code base looking for the method invocation that put
the coin into the stamp collection. The compiler can’t help you, because it can’t
understand the comment that says, “Contains only Stamp instances.”

With generics, you replace the comment with an improved type declaration
for the collection that tells the compiler the information that was previously hid-
den in the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 111

From this declaration the compiler knows that stamps should contain only Stamp
instances and guarantees this to be the case, assuming your entire code base is
compiled with a compiler from release 1.5 or later and all the code compiles with-
out emitting (or suppressing; see Item 24) any warnings. When stamps is declared
with a parameterized type, the erroneous insertion generates a compile-time error
message that tells you exactly what is wrong:

Test.java:9: add(Stamp) in Collection<Stamp> cannot be applied
to (Coin)

stamps.add(new Coin());
 ^

As an added benefit, you no longer have to cast manually when removing ele-
ments from collections. The compiler inserts invisible casts for you and guaran-
tees that they won’t fail (assuming, again, that all of your code was compiled with
a generics-aware compiler and did not produce or suppress any warnings). This is
true whether you use a for-each loop (Item 46):

// for-each loop over a parameterized collection - typesafe
for (Stamp s : stamps) { // No cast

... // Do something with the stamp
}

or a traditional for loop:

// for loop with parameterized iterator declaration - typesafe
for (Iterator<Stamp> i = stamps.iterator(); i.hasNext();) {

Stamp s = i.next(); // No cast necessary
... // Do something with the stamp

}

While the prospect of accidentally inserting a coin into a stamp collection
may appear far-fetched, the problem is real. For example, it is easy to imagine
someone putting a java.util.Date instance into a collection that is supposed to
contain only java.sql.Date instances.

As noted above, it is still legal to use collection types and other generic types
without supplying type parameters, but you should not do it. If you use raw
types, you lose all the safety and expressiveness benefits of generics. Given that
you shouldn’t use raw types, why did the language designers allow them? To pro-
vide compatibility. The Java platform was about to enter its second decade when
generics were introduced, and there was an enormous amount of Java code in

CHAPTER 5 GENERICS112

existence that did not use generics. It was deemed critical that all of this code
remain legal and interoperable with new code that does use generics. It had to be
legal to pass instances of parameterized types to methods that were designed for
use with ordinary types, and vice versa. This requirement, known as migration
compatibility, drove the decision to support raw types.

While you shouldn’t use raw types such as List in new code, it is fine to use
types that are parameterized to allow insertion of arbitrary objects, such as
List<Object>. Just what is the difference between the raw type List and the
parameterized type List<Object>? Loosely speaking, the former has opted out of
generic type checking, while the latter has explicitly told the compiler that it is
capable of holding objects of any type. While you can pass a List<String> to a
parameter of type List, you can’t pass it to a parameter of type List<Object>.
There are subtyping rules for generics, and List<String> is a subtype of the raw
type List, but not of the parameterized type List<Object> (Item 25). As a conse-
quence, you lose type safety if you use a raw type like List, but not if you use
a parameterized type like List<Object>.

To make this concrete, consider the following program:

// Uses raw type (List) - fails at runtime!
public static void main(String[] args) {

List<String> strings = new ArrayList<String>();
unsafeAdd(strings, new Integer(42));
String s = strings.get(0); // Compiler-generated cast

}

private static void unsafeAdd(List list, Object o) {
list.add(o);

}

This program compiles, but because it uses the raw type List, you get a warning:

Test.java:10: warning: unchecked call to add(E) in raw type List
list.add(o);

^

And indeed, if you run the program, you get a ClassCastException when the
program tries to cast the result of the invocation strings.get(0) to a String.
This is a compiler-generated cast, so it’s normally guaranteed to succeed, but in
this case we ignored a compiler warning and paid the price.

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 113

If you replace the raw type List with the parameterized type List<Object>
in the unsafeAdd declaration and try to recompile the program, you’ll find that it
no longer compiles. Here is the error message:

Test.java:5: unsafeAdd(List<Object>,Object) cannot be applied
to (List<String>,Integer)

unsafeAdd(strings, new Integer(42));
^

You might be tempted to use a raw type for a collection whose element type is
unknown and doesn’t matter. For example, suppose you want to write a method
that takes two sets and returns the number of elements they have in common.
Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set s1, Set s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

This method works but it uses raw types, which are dangerous. Since release
1.5, Java has provided a safe alternative known as unbounded wildcard types. If
you want to use a generic type but you don’t know or care what the actual type
parameter is, you can use a question mark instead. For example, the unbounded
wildcard type for the generic type Set<E> is Set<?> (read “set of some type”). It
is the most general parameterized Set type, capable of holding any set. Here is
how the numElementsInCommon method looks with unbounded wildcard types:

// Unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> s1, Set<?> s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Do the question marks really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn’t. You can put any element

CHAPTER 5 GENERICS114

into a collection with a raw type, easily corrupting the collection’s type invariant
(as demonstrated by the unsafeAdd method on page 112); you can’t put any ele-
ment (other than null) into a Collection<?>. Attempting to do so will gener-
ate a compile-time error message like this:

WildCard.java:13: cannot find symbol
symbol : method add(String)
location: interface Collection<capture#825 of ?>

c.add("verboten");
^

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from corrupting the collection’s type invari-
ant. Not only can’t you put any element (other than null) into a Collection<?>,
but you can’t assume anything about the type of the objects that you get out. If
these restrictions are unacceptable, you can use generic methods (Item 27) or
bounded wildcard types (Item 28).

There are two minor exceptions to the rule that you should not use raw types
in new code, both of which stem from the fact that generic type information is
erased at runtime (Item 25). You must use raw types in class literals. The speci-
fication does not permit the use of parameterized types (though it does permit
array types and primitive types) [JLS, 15.8.2]. In other words, List.class,
String[].class, and int.class are all legal, but List<String>.class and
List<?>.class are not.

The second exception to the rule concerns the instanceof operator. Because
generic type information is erased at runtime, it is illegal to use the instanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place of raw types does not affect the behavior of the
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// Legitimate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> m = (Set<?>) o; // Wildcard type
...

}

Note that once you’ve determined that o is a Set, you must cast it to the wildcard
type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a
compiler warning.

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 115

In summary, using raw types can lead to exceptions at runtime, so don’t use
them in new code. They are provided only for compatibility and interoperability
with legacy code that predates the introduction of generics. As a quick review,
Set<Object> is a parameterized type representing a set that can contain objects of
any type, Set<?> is a wildcard type representing a set that can contain only
objects of some unknown type, and Set is a raw type, which opts out of the
generic type system. The first two are safe and the last is not.

For quick reference, the terms introduced in this item (and a few introduced
elsewhere in this chapter) are summarized in the following table:

Term Example Item

Parameterized type List<String> Item 23

Actual type parameter String Item 23

Generic type List<E> Items 23, 26

Formal type parameter E Item 23

Unbounded wildcard type List<?> Item 23

Raw type List Item 23

Bounded type parameter <E extends Number> Item 26

Recursive type bound <T extends Comparable<T>> Item 27

Bounded wildcard type List<? extends Number> Item 28

Generic method static <E> List<E> asList(E[] a) Item 27

Type token String.class Item 29

CHAPTER 5 GENERICS116

Item 24: Eliminate unchecked warnings

When you program with generics, you will see many compiler warnings:
unchecked cast warnings, unchecked method invocation warnings, unchecked
generic array creation warnings, and unchecked conversion warnings. The more
experience you acquire with generics, the fewer warnings you’ll get, but don’t
expect newly written code that uses generics to compile cleanly.

Many unchecked warnings are easy to eliminate. For example, suppose you
accidentally write this declaration:

Set<Lark> exaltation = new HashSet();

The compiler will gently remind you what you did wrong:

Venery.java:4: warning: [unchecked] unchecked conversion
found : HashSet, required: Set<Lark>

Set<Lark> exaltation = new HashSet();
^

You can then make the indicated correction, causing the warning to disappear:

Set<Lark> exaltation = new HashSet<Lark>();

Some warnings will be much more difficult to eliminate. This chapter is filled
with examples of such warnings. When you get warnings that require some
thought, persevere! Eliminate every unchecked warning that you can. If you
eliminate all warnings, you are assured that your code is typesafe, which is a very
good thing. It means that you won’t get a ClassCastException at runtime, and it
increases your confidence that your program is behaving as you intended.

If you can’t eliminate a warning, and you can prove that the code that
provoked the warning is typesafe, then (and only then) suppress the warning
with an @SuppressWarnings("unchecked") annotation. If you suppress warn-
ings without first proving that the code is typesafe, you are only giving yourself a
false sense of security. The code may compile without emitting any warnings, but
it can still throw a ClassCastException at runtime. If, however, you ignore
unchecked warnings that you know to be safe (instead of suppressing them), you
won’t notice when a new warning crops up that represents a real problem. The
new warning will get lost amidst all the false alarms that you didn’t silence.

ITEM 24: ELIMINATE UNCHECKED WARNINGS 117

The SuppressWarnings annotation can be used at any granularity, from an
individual local variable declaration to an entire class. Always use the Suppress-
Warnings annotation on the smallest scope possible. Typically this will be a
variable declaration or a very short method or constructor. Never use Suppress-
Warnings on an entire class. Doing so could mask critical warnings.

If you find yourself using the SuppressWarnings annotation on a method or
constructor that’s more than one line long, you may be able to move it onto a local
variable declaration. You may have to declare a new local variable, but it’s worth
it. For example, consider this toArray method, which comes from ArrayList:

public <T> T[] toArray(T[] a) {
if (a.length < size)

return (T[]) Arrays.copyOf(elements, size, a.getClass());
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

If you compile ArrayList, the method generates this warning:

ArrayList.java:305: warning: [unchecked] unchecked cast
found : Object[], required: T[]

return (T[]) Arrays.copyOf(elements, size, a.getClass());
^

It is illegal to put a SuppressWarnings annotation on the return statement,
because it isn’t a declaration [JLS, 9.7]. You might be tempted to put the annota-
tion on the entire method, but don’t. Instead, declare a local variable to hold the
return value and annotate its declaration, like so:

// Adding local variable to reduce scope of @SuppressWarnings
public <T> T[] toArray(T[] a) {

if (a.length < size) {
// This cast is correct because the array we're creating
// is of the same type as the one passed in, which is T[].
@SuppressWarnings("unchecked") T[] result =

(T[]) Arrays.copyOf(elements, size, a.getClass());
return result;

}
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

CHAPTER 5 GENERICS118

This method compiles cleanly and minimizes the scope in which unchecked warn-
ings are suppressed.

Every time you use an @SuppressWarnings("unchecked") annotation,
add a comment saying why it’s safe to do so. This will help others understand
the code, and more importantly, it will decrease the odds that someone will mod-
ify the code so as to make the computation unsafe. If you find it hard to write such
a comment, keep thinking. You may end up figuring out that the unchecked opera-
tion isn’t safe after all.

In summary, unchecked warnings are important. Don’t ignore them. Every
unchecked warning represents the potential for a ClassCastException at run-
time. Do your best to eliminate these warnings. If you can’t eliminate an
unchecked warning and you can prove that the code that provoked it is typesafe,
suppress the warning with an @SuppressWarnings("unchecked") annotation in
the narrowest possible scope. Record the rationale for your decision to suppress
the warning in a comment.

ITEM 25: PREFER LISTS TO ARRAYS 119

Item 25: Prefer lists to arrays

Arrays differ from generic types in two important ways. First, arrays are covariant.
This scary-sounding word means simply that if Sub is a subtype of Super, then the
array type Sub[] is a subtype of Super[]. Generics, by contrast, are invariant: for
any two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a
supertype of List<Type2> [JLS, 4.10; Naftalin07, 2.5]. You might think this
means that generics are deficient, but arguably it is arrays that are deficient.

This code fragment is legal:

// Fails at runtime!
Object[] objectArray = new Long[1];
objectArray[0] = "I don't fit in"; // Throws ArrayStoreException

but this one is not:

// Won't compile!
List<Object> ol = new ArrayList<Long>(); // Incompatible types
ol.add("I don't fit in");

Either way you can’t put a String into a Long container, but with an array you
find out that you’ve made a mistake at runtime; with a list, you find out at compile
time. Of course you’d rather find out at compile time.

The second major difference between arrays and generics is that arrays are
reified [JLS, 4.7]. This means that arrays know and enforce their element types at
runtime. As noted above, if you try to store a String into an array of Long, you’ll
get an ArrayStoreException. Generics, by contrast, are implemented by erasure
[JLS, 4.6]. This means that they enforce their type constraints only at compile
time and discard (or erase) their element type information at runtime. Erasure is
what allows generic types to interoperate freely with legacy code that does not use
generics (Item 23).

Because of these fundamental differences, arrays and generics do not mix
well. For example, it is illegal to create an array of a generic type, a parameterized
type, or a type parameter. None of these array creation expressions are legal: new
List<E>[], new List<String>[], new E[]. All will result in generic array cre-
ation errors at compile time.

Why is it illegal to create a generic array? Because it isn’t typesafe. If it were
legal, casts generated by the compiler in an otherwise correct program could fail at
runtime with a ClassCastException. This would violate the fundamental guaran-
tee provided by the generic type system.

CHAPTER 5 GENERICS120

To make this more concrete, consider the following code fragment:

// Why generic array creation is illegal - won't compile!
List<String>[] stringLists = new List<String>[1]; // (1)
List<Integer> intList = Arrays.asList(42); // (2)
Object[] objects = stringLists; // (3)
objects[0] = intList; // (4)
String s = stringLists[0].get(0); // (5)

Let’s pretend that line 1, which creates a generic array, is legal. Line 2 creates and
initializes a List<Integer> containing a single element. Line 3 stores the
List<String> array into an Object array variable, which is legal because arrays
are covariant. Line 4 stores the List<Integer> into the sole element of the
Object array, which succeeds because generics are implemented by erasure: the
runtime type of a List<Integer> instance is simply List, and the runtime type of
a List<String>[] instance is List[], so this assignment doesn’t generate an
ArrayStoreException. Now we’re in trouble. We’ve stored a List<Integer>
instance into an array that is declared to hold only List<String> instances. In
line 5, we retrieve the sole element from the sole list in this array. The compiler
automatically casts the retrieved element to String, but it’s an Integer, so we get
a ClassCastException at runtime. In order to prevent this from happening, line 1
(which creates a generic array) generates a compile-time error.

Types such as E, List<E>, and List<String> are technically known as non-
reifiable types [JLS, 4.7]. Intuitively speaking, a non-reifiable type is one whose
runtime representation contains less information than its compile-time representa-
tion. The only parameterized types that are reifiable are unbounded wildcard types
such as List<?> and Map<?,?> (Item 23). It is legal, though infrequently useful, to
create arrays of unbounded wildcard types.

The prohibition on generic array creation can be annoying. It means, for exam-
ple, that it’s not generally possible for a generic type to return an array of its ele-
ment type (but see Item 29 for a partial solution). It also means that you can get
confusing warnings when using varargs methods (Item 42) in combination with
generic types. This is because every time you invoke a varargs method, an array is
created to hold the varargs parameters. If the element type of this array is not reifi-
able, you get a warning. There is little you can do about these warnings other than
to suppress them (Item 24), and to avoid mixing generics and varargs in your APIs.

When you get a generic array creation error, the best solution is often to use
the collection type List<E> in preference to the array type E[]. You might sacri-
fice some performance or conciseness, but in exchange you get better type safety
and interoperability.

ITEM 25: PREFER LISTS TO ARRAYS 121

For example, suppose you have a synchronized list (of the sort returned by
Collections.synchronizedList) and a function that takes two values of the
type held by the list and returns a third. Now suppose you want to write a method
to “reduce” the list by applying the function across it. If the list contains integers
and the function adds two integer values, the reduce method returns the sum of all
the values in the list. If the function multiplies two integer values, the method
returns the product of the values in the list. If the list contains strings and the func-
tion concatenates two strings, the method returns a string consisting of all the
strings in the list in sequence. In addition to a list and a function, the reduce
method takes an initial value for the reduction, which is returned if the list is
empty. (The initial value is typically the identity element for the function, which is
0 for addition, 1 for multiplication, and "" for string concatenation.) Here’s how
the code might have looked without generics:

// Reduction without generics, and with concurrency flaw!
static Object reduce(List list, Function f, Object initVal) {

synchronized(list) {
Object result = initVal;
for (Object o : list)

result = f.apply(result, o);
return result;

}
}

interface Function {
Object apply(Object arg1, Object arg2);

}

Now, suppose you’ve read Item 67, which tells you not to call “alien methods”
from a synchronized region. So, you modify the reduce method to copy the con-
tents of the list while holding the lock, which allows you to perform the reduction
on the copy. Prior to release 1.5, the natural way to do this would have been using
List’s toArray method (which locks the list internally):

// Reduction without generics or concurrency flaw
static Object reduce(List list, Function f, Object initVal) {

Object[] snapshot = list.toArray(); // Locks list internally
Object result = initVal;
for (Object o : snapshot)

result = f.apply(result, o);
return result;

}

CHAPTER 5 GENERICS122

If you try to do this with generics you’ll get into trouble of the sort that we
discussed above. Here’s a generic version of the Function interface:

interface Function<T> {
T apply(T arg1, T arg2);

}

And here’s a naive attempt to apply generics to the revised version of the reduce
method. This is a generic method (Item 27). Don’t worry if you don’t understand
the declaration. For the purposes of this item, you should concentrate on the
method body:

// Naive generic version of reduction - won't compile!
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

E[] snapshot = list.toArray(); // Locks list
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

If you try to compile this method, you’ll get the following error:

Reduce.java:12: incompatible types
found : Object[], required: E[]

E[] snapshot = list.toArray(); // Locks list
^

No big deal, you say, I’ll cast the Object array to an E array:

E[] snapshot = (E[]) list.toArray();

That gets rid of the error, but now you get a warning:

Reduce.java:12: warning: [unchecked] unchecked cast
found : Object[], required: E[]

E[] snapshot = (E[]) list.toArray(); // Locks list
^

The compiler is telling you that it can’t check the safety of the cast at runtime
because it doesn’t know what E is at runtime—remember, element type informa-
tion is erased from generics at runtime. Will this program work? Yes, it turns out
that it will, but it isn’t safe. With minor modifications, you could get it to throw a

ITEM 25: PREFER LISTS TO ARRAYS 123

ClassCastException on a line that doesn’t contain an explicit cast. The compile-
time type of snapshot is E[] which could be String[], Integer[], or any other
kind of array. The runtime type is Object[], and that’s dangerous. Casts to arrays
of non-reifiable types should be used only under special circumstances (Item 26).

So what should you do? Use a list instead of an array. Here is a version of the
reduce method that compiles without error or warning:

// List-based generic reduction
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

List<E> snapshot;
synchronized(list) {

snapshot = new ArrayList<E>(list);
}
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

This version is a tad more verbose than the array version, but it’s worth it for the
peace of mind that comes from knowing you won’t get a ClassCastException at
runtime.

In summary, arrays and generics have very different type rules. Arrays are
covariant and reified; generics are invariant and erased. As a consequence, arrays
provide runtime type safety but not compile-time type safety and vice versa for
generics. Generally speaking, arrays and generics don’t mix well. If you find
yourself mixing them and getting compile-time errors or warnings, your first
impulse should be to replace the arrays with lists.

CHAPTER 5 GENERICS124

Item 26: Favor generic types

It is generally not too difficult to parameterize your collection declarations and
make use of the generic types and methods provided by the JDK. Writing your
own generic types is a bit more difficult, but it’s worth the effort to learn how.

Consider the simple stack implementation from Item 6:

// Object-based collection - a prime candidate for generics
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

public boolean isEmpty() {
return size == 0;

}

private void ensureCapacity() {
if (elements.length == size)

elements = Arrays.copyOf(elements, 2 * size + 1);
}

}

This class is a prime candidate for generification, in other words, for being com-
patibly enhanced to take advantage of generic types. As it stands, you have to cast
objects that are popped off the stack, and those casts might fail at runtime. The
first step in generifying a class is to add one or more type parameters to its decla-

ITEM 26: FAVOR GENERIC TYPES 125

ration. In this case there is one type parameter, representing the element type of
the stack, and the conventional name for this parameter is E (Item 44).

The next step is to replace all the uses of the type Object with the appropriate
type parameter, and then try to compile the resulting program:

// Initial attempt to generify Stack = won’t compile!
public class Stack<E> {

private E[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new E[DEFAULT_INITIAL_CAPACITY];

}

public void push(E e) {
ensureCapacity();
elements[size++] = e;

}

public E pop() {
if (size==0)

throw new EmptyStackException();
E result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}
... // no changes in isEmpty or ensureCapacity

}

You’ll generally get at least one error or warning, and this class is no exception.
Luckily, this class generates only one error:

Stack.java:8: generic array creation
elements = new E[DEFAULT_INITIAL_CAPACITY];

^

As explained in Item 25, you can’t create an array of a non-reifiable type, such
as E. This problem arises every time you write a generic type that is backed by an
array. There are two ways to solve it. The first solution directly circumvents the
prohibition on generic array creation: create an array of Object and cast it to the

CHAPTER 5 GENERICS126

generic array type. Now in place of an error, the compiler will emit a warning.
This usage is legal, but it’s not (in general) typesafe:

Stack.java:8: warning: [unchecked] unchecked cast
found : Object[], required: E[]

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
^

The compiler may not be able to prove that your program is typesafe, but you
can. You must convince yourself that the unchecked cast will not compromise the
type safety of the program. The array in question (elements) is stored in a private
field and never returned to the client or passed to any other method. The only ele-
ments stored in the array are those passed to the push method, which are of type E,
so the unchecked cast can do no harm.

Once you’ve proved that an unchecked cast is safe, suppress the warning in as
narrow a scope as possible (Item 24). In this case, the constructor contains only the
unchecked array creation, so it’s appropriate to suppress the warning in the entire
constructor. With the addition of an annotation to do this, Stack compiles cleanly
and you can use it without explicit casts or fear of a ClassCastException:

// The elements array will contain only E instances from push(E).
// This is sufficient to ensure type safety, but the runtime
// type of the array won't be E[]; it will always be Object[]!
@SuppressWarnings("unchecked")
public Stack() {

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
}

The second way to eliminate the generic array creation error in Stack is to
change the type of the field elements from E[] to Object[]. If you do this, you’ll
get a different error:

Stack.java:19: incompatible types
found : Object, required: E

E result = elements[--size];
 ^

You can change this error into a warning by casting the element retrieved from the
array from Object to E:

Stack.java:19: warning: [unchecked] unchecked cast
found : Object, required: E

E result = (E) elements[--size];
 ^

ITEM 26: FAVOR GENERIC TYPES 127

Because E is a non-reifiable type, there’s no way the compiler can check the
cast at runtime. Again, you can easily prove to yourself that the unchecked cast is
safe, so it’s appropriate to suppress the warning. In line with the advice of Item 24,
we suppress the warning only on the assignment that contains the unchecked cast,
not on the entire pop method:

// Appropriate suppression of unchecked warning
public E pop() {

if (size==0)
throw new EmptyStackException();

// push requires elements to be of type E, so cast is correct
@SuppressWarnings("unchecked") E result =

(E) elements[--size];

elements[size] = null; // Eliminate obsolete reference
return result;

}

Which of the two techniques you choose for dealing with the generic array
creation error is largely a matter of taste. All other things being equal, it is riskier
to suppress an unchecked cast to an array type than to a scalar type, which would
suggest the second solution. But in a more realistic generic class than Stack, you
would probably be reading from the array at many points in the code, so choosing
the second solution would require many casts to E rather than a single cast to E[],
which is why the first solution is used more commonly [Naftalin07, 6.7].

The following program demonstrates the use of our generic Stack class. The
program prints its command line arguments in reverse order and converted to
uppercase. No explicit cast is necessary to invoke String’s toUpperCase method
on the elements popped from the stack, and the automatically generated cast is
guaranteed to succeed:

// Little program to exercise our generic Stack
public static void main(String[] args) {

Stack<String> stack = new Stack<String>();
for (String arg : args)

stack.push(arg);
while (!stack.isEmpty())

System.out.println(stack.pop().toUpperCase());
}

CHAPTER 5 GENERICS128

The foregoing example may appear to contradict Item 25, which encourages
the use of lists in preference to arrays. It is not always possible or desirable to use
lists inside your generic types. Java doesn’t support lists natively, so some generic
types, such as ArrayList, must be implemented atop arrays. Other generic types,
such as HashMap, are implemented atop arrays for performance.

The great majority of generic types are like our Stack example in that their
type parameters have no restrictions: you can create a Stack<Object>,
Stack<int[]>, Stack<List<String>>, or a Stack of any other object reference
type. Note that you can’t create a Stack of a primitive type: trying to create a
Stack<int> or Stack<double> will result in a compile-time error. This is a fun-
damental limitation of Java’s generic type system. You can work around this
restriction by using boxed primitive types (Item 49).

There are some generic types that restrict the permissible values of their type
parameters. For example, consider java.util.concurrent.DelayQueue, whose
declaration looks like this:

class DelayQueue<E extends Delayed> implements BlockingQueue<E>;

The type parameter list (<E extends Delayed>) requires that the actual type
parameter E must be a subtype of java.util.concurrent.Delayed. This allows
the DelayQueue implementation and its clients to take advantage of Delayed
methods on the elements of a DelayQueue, without the need for explicit casting or
the risk of a ClassCastException. The type parameter E is known as a bounded
type parameter. Note that the subtype relation is defined so that every type is a
subtype of itself [JLS, 4.10], so it is legal to create a DelayQueue<Delayed>.

In summary, generic types are safer and easier to use than types that require
casts in client code. When you design new types, make sure that they can be used
without such casts. This will often mean making the types generic. Generify your
existing types as time permits. This will make life easier for new users of these
types without breaking existing clients (Item 23).

ITEM 27: FAVOR GENERIC METHODS 129

Item 27: Favor generic methods

Just as classes can benefit from generification, so can methods. Static utility meth-
ods are particularly good candidates for generification. All of the “algorithm”
methods in Collections (such as binarySearch and sort) have been generified.

Writing generic methods is similar to writing generic types. Consider this
method, which returns the union of two sets:

// Uses raw types - unacceptable! (Item 23)
public static Set union(Set s1, Set s2) {

Set result = new HashSet(s1);
result.addAll(s2);
return result;

}

This method compiles, but with two warnings:

Union.java:5: warning: [unchecked] unchecked call to
HashSet(Collection<? extends E>) as a member of raw type HashSet

Set result = new HashSet(s1);
^

Union.java:6: warning: [unchecked] unchecked call to
addAll(Collection<? extends E>) as a member of raw type Set

result.addAll(s2);
^

To fix these warnings and make the method typesafe, modify the method dec-
laration to declare a type parameter representing the element type for the three sets
(two arguments and the return value) and use the type parameter in the method.
The type parameter list, which declares the type parameter, goes between the
method’s modifiers and its return type. In this example, the type parameter list
is <E> and the return type is Set<E>. The naming conventions for type parameters
are the same for generic methods as for generic types (Items 26, 44):

// Generic method
public static <E> Set<E> union(Set<E> s1, Set<E> s2) {

Set<E> result = new HashSet<E>(s1);
result.addAll(s2);
return result;

}

At least for simple generic methods, that’s all there is to it. Now the method
compiles without generating any warnings and provides type safety as well as ease

CHAPTER 5 GENERICS130

of use. Here’s a simple program to exercise our method. The program contains no
casts and compiles without errors or warnings:

// Simple program to exercise generic method
public static void main(String[] args) {

Set<String> guys = new HashSet<String>(
Arrays.asList("Tom", "Dick", "Harry"));

Set<String> stooges = new HashSet<String>(
Arrays.asList("Larry", "Moe", "Curly"));

Set<String> aflCio = union(guys, stooges);
System.out.println(aflCio);

}

When you run the program, it prints [Moe, Harry, Tom, Curly, Larry, Dick].
The order of the elements is implementation-dependent.

A limitation of the union method is that the types of all three sets (both input
parameters and the return value) have to be the same. You can make the method
more flexible by using bounded wildcard types (Item 28).

One noteworthy feature of generic methods is that you needn’t specify the
value of the type parameter explicitly as you must when invoking generic con-
structors. The compiler figures out the value of the type parameters by examining
the types of the method arguments. In the case of the program above, the compiler
sees that both arguments to union are of type Set<String>, so it knows that the
type parameter E must be String. This process is called type inference.

As discussed in Item 1, you can exploit the type inference provided by generic
method invocation to ease the process of creating parameterized type instances. To
refresh your memory, the need to pass the values of type parameters explicitly
when invoking generic constructors can be annoying. The type parameters appear
redundantly on the left- and right-hand sides of variable declarations:

// Parameterized type instance creation with constructor
Map<String, List<String>> anagrams =

new HashMap<String, List<String>>();

To eliminate this redundancy, write a generic static factory method corre-
sponding to each constructor that you want to use. For example, here is a generic
static factory method corresponding to the parameterless HashMap constructor:

// Generic static factory method
public static <K,V> HashMap<K,V> newHashMap() {

return new HashMap<K,V>();
}

ITEM 27: FAVOR GENERIC METHODS 131

With this generic static factory method, you can replace the repetitious declaration
above with this concise one:

// Parameterized type instance creation with static factory
Map<String, List<String>> anagrams = newHashMap();

It would be nice if the language did the same kind of type inference when
invoking constructors on generic types as it does when invoking generic methods.
Someday it might, but as of release 1.6, it does not.

A related pattern is the generic singleton factory. On occasion, you will need
to create an object that is immutable but applicable to many different types.
Because generics are implemented by erasure (Item 25), you can use a single
object for all required type parameterizations, but you need to write a static fac-
tory method to repeatedly dole out the object for each requested type parameter-
ization. This pattern is most frequently used for function objects (Item 21) such as
Collections.reverseOrder, but it is also used for collections such as Collec-
tions.emptySet.

Suppose you have an interface that describes a function that accepts and
returns a value of some type T:

public interface UnaryFunction<T> {
T apply(T arg);

}

Now suppose that you want to provide an identity function. It would be wasteful
to create a new one each time it’s required, as it’s stateless. If generics were rei-
fied, you would need one identity function per type, but since they’re erased you
need only a generic singleton. Here’s how it looks:

// Generic singleton factory pattern
private static UnaryFunction<Object> IDENTITY_FUNCTION =

new UnaryFunction<Object>() {
public Object apply(Object arg) { return arg; }

};

// IDENTITY_FUNCTION is stateless and its type parameter is
// unbounded so it's safe to share one instance across all types.
@SuppressWarnings("unchecked")
public static <T> UnaryFunction<T> identityFunction() {

return (UnaryFunction<T>) IDENTITY_FUNCTION;
}

CHAPTER 5 GENERICS132

The cast of IDENTITY_FUNCTION to (UnaryFunction<T>) generates an
unchecked cast warning, as UnaryFunction<Object> is not a UnaryFunction<T>
for every T. But the identity function is special: it returns its argument unmodified,
so we know that it is typesafe to use it as a UnaryFunction<T> whatever the value
of T. Therefore, we can confidently suppress the unchecked cast warning that is
generated by this cast. Once we’ve done this, the code compiles without error or
warning.

Here is a sample program that uses our generic singleton as a UnaryFunc-
tion<String> and a UnaryFunction<Number>. As usual, it contains no casts and
compiles without errors or warnings:

// Sample program to exercise generic singleton
public static void main(String[] args) {

String[] strings = { "jute", "hemp", "nylon" };
UnaryFunction<String> sameString = identityFunction();
for (String s : strings)

System.out.println(sameString.apply(s));

Number[] numbers = { 1, 2.0, 3L };
UnaryFunction<Number> sameNumber = identityFunction();
for (Number n : numbers)

System.out.println(sameNumber.apply(n));
}

It is permissible, though relatively rare, for a type parameter to be bounded by
some expression involving that type parameter itself. This is what’s known as a
recursive type bound. The most common use of recursive type bounds is in con-
nection with the Comparable interface, which defines a type’s natural ordering:

public interface Comparable<T> {
int compareTo(T o);

}

The type parameter T defines the type to which elements of the type implementing
Comparable<T> can be compared. In practice, nearly all types can be compared
only to elements of their own type. So, for example, String implements Compa-
rable<String>, Integer implements Comparable<Integer>, and so on.

There are many methods that take a list of elements that implement Compara-
ble, in order to sort the list, search within it, calculate its minimum or maximum,
and the like. To do any of these things, it is required that every element in the list

ITEM 27: FAVOR GENERIC METHODS 133

be comparable to every other element in the list, in other words, that the elements
of the list be mutually comparable. Here is how to express that constraint:

// Using a recursive type bound to express mutual comparability
public static <T extends Comparable<T>> T max(List<T> list) {...}

The type bound <T extends Comparable<T>> may be read as “for every type T
that can be compared to itself,” which corresponds more or less exactly to the
notion of mutual comparability.

Here is a method to go with the declaration above. It calculates the maximum
value of a list according to its elements’ natural order, and it compiles without
errors or warnings:

// Returns the maximum value in a list - uses recursive type bound
public static <T extends Comparable<T>> T max(List<T> list) {

Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Recursive type bounds can get much more complex than this, but luckily it
doesn’t happen too often. If you understand this idiom, and its wildcard variant
(Item 28), you’ll be able to deal with many of the recursive type bounds that you
see in practice.

In summary, generic methods, like generic types, are safer and easier to use
than methods that require their clients to cast input parameters and return values.
Like types, you should make sure that your new methods can be used without
casts, which will often mean making them generic. And like types, you should
generify your existing methods to make life easier for new users without breaking
existing clients (Item 23).

CHAPTER 5 GENERICS134

Item 28: Use bounded wildcards to increase API flexibility

As noted in Item 25, parameterized types are invariant. In other words, for any
two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a
supertype of List<Type2>. While it is counterintuitive that List<String> is not a
subtype of List<Object>, it really does make sense. You can put any object into a
List<Object>, but you can put only strings into a List<String>.

Sometimes you need more flexibility than invariant typing can provide. Con-
sider the stack from Item 26. To refresh your memory, here is its public API:

public class Stack<E> {
public Stack();
public void push(E e);
public E pop();
public boolean isEmpty();

}

Suppose we want to add a method that takes a sequence of elements and
pushes them all onto the stack. Here’s a first attempt:

// pushAll method without wildcard type - deficient!
public void pushAll(Iterable<E> src) {

for (E e : src)
push(e);

}

This method compiles cleanly, but it isn’t entirely satisfactory. If the element type
of the Iterable src exactly matches that of the stack, it works fine. But suppose
you have a Stack<Number> and you invoke push(intVal), where intVal is of
type Integer. This works, because Integer is a subtype of Number. So logically,
it seems that this should work, too:

Stack<Number> numberStack = new Stack<Number>();
Iterable<Integer> integers = ... ;
numberStack.pushAll(integers);

If you try it, however, you’ll get this error message because, as noted above,
parameterized types are invariant:

StackTest.java:7: pushAll(Iterable<Number>) in Stack<Number>
cannot be applied to (Iterable<Integer>)

numberStack.pushAll(integers);
^

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 135

Luckily, there’s a way out. The language provides a special kind of parameter-
ized type call a bounded wildcard type to deal with situations like this. The type of
the input parameter to pushAll should not be “Iterable of E” but “Iterable of
some subtype of E,” and there is a wildcard type that means precisely that: Iter-
able<? extends E>. (The use of the keyword extends is slightly misleading:
recall from Item 26 that subtype is defined so that every type is a subtype of itself,
even though it does not extend itself.) Let’s modify pushAll to use this type:

// Wildcard type for parameter that serves as an E producer
public void pushAll(Iterable<? extends E> src) {

for (E e : src)
push(e);

}

With this change, not only does Stack compile cleanly, but so does the client code
that wouldn’t compile with the original pushAll declaration. Because Stack and
its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAll method to go with pushAll. The
popAll method pops each element off the stack and adds the elements to the given
collection. Here’s how a first attempt at writing the popAll method might look:

// popAll method without wildcard type - deficient!
public void popAll(Collection<E> dst) {

while (!isEmpty())
dst.add(pop());

}

Again, this compiles cleanly and works fine if the element type of the destination
collection exactly matches that of the stack. But again, it doesn’t seem entirely
satisfactory. Suppose you have a Stack<Number> and variable of type Object. If
you pop an element from the stack and store it in the variable, it compiles and runs
without error. So shouldn’t you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>();
Collection<Object> objects = ... ;
numberStack.popAll(objects);

If you try to compile this client code against the version of popAll above, you’ll
get an error very similar to the one that we got with our first version of pushAll:
Collection<Object> is not a subtype of Collection<Number>. Once again,
wildcard types provide a way out. The type of the input parameter to popAll

CHAPTER 5 GENERICS136

should not be “collection of E” but “collection of some supertype of E” (where
supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again, there is
a wildcard type that means precisely that: Collection<? super E>. Let’s modify
popAll to use it:

// Wildcard type for parameter that serves as an E consumer
public void popAll(Collection<? super E> dst) {

while (!isEmpty())
dst.add(pop());

}

With this change, both Stack and the client code compile cleanly.
The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is
both a producer and a consumer, then wildcard types will do you no good: you
need an exact type match, which is what you get without any wildcards.

Here is a mnemonic to help you remember which wildcard type to use:

PECS stands for producer-extends, consumer-super.

In other words, if a parameterized type represents a T producer, use <? extends T>;
if it represents a T consumer, use <? super T>. In our Stack example, pushAll’s
src parameter produces E instances for use by the Stack, so the appropriate type
for src is Iterable<? extends E>; popAll’s dst parameter consumes E instances
from the Stack, so the appropriate type for dst is Collection<? super E>. The
PECS mnemonic captures the fundamental principle that guides the use of wild-
card types. Naftalin and Wadler call it the Get and Put Principle [Naftalin07, 2.4].

With this mnemonic in mind, let’s take a look at some method declarations
from previous items. The reduce method in Item 25 has this declaration:

static <E> E reduce(List<E> list, Function<E> f, E initVal)

Although lists can both consume and produce values, the reduce method uses its
list parameter only as an E producer, so its declaration should use a wildcard
type that extends E. The parameter f represents a function that both consumes
and produces E instances, so a wildcard type would be inappropriate for it. Here’s
the resulting method declaration:

// Wildcard type for parameter that serves as an E producer
static <E> E reduce(List<? extends E> list, Function<E> f,

E initVal)

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 137

And would this change make any difference in practice? As it turns out, it
would. Suppose you have a List<Integer>, and you want to reduce it with a
Function<Number>. This would not compile with the original declaration, but it
does once you add the bounded wildcard type.

Now let’s look at the union method from Item 27. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, s1 and s2, are E producers, so the PECS mnemonic tells us that
the declaration should be:

public static <E> Set<E> union(Set<? extends E> s1,
Set<? extends E> s2)

Note that the return type is still Set<E>. Do not use wildcard types as return
types. Rather than providing additional flexibility for your users, it would force
them to use wildcard types in client code.

Properly used, wildcard types are nearly invisible to users of a class. They
cause methods to accept the parameters they should accept and reject those they
should reject. If the user of a class has to think about wildcard types, there is
probably something wrong with the class’s API.

Unfortunately, the type inference rules are quite complex. They take up six-
teen pages in the language specification [JLS, 15.12.2.7–8], and they don’t always
do what you want them to. Looking at the revised declaration for union, you
might think that you could do this:

Set<Integer> integers = ... ;
Set<Double> doubles = ... ;
Set<Number> numbers = union(integers, doubles);

If you try it you’ll get this error message:

Union.java:14: incompatible types
found : Set<Number & Comparable<? extends Number &

Comparable<?>>>
required: Set<Number>

Set<Number> numbers = union(integers, doubles);
 ^

Luckily there is a way to deal with this sort of error. If the compiler doesn’t
infer the type that you wish it had, you can tell it what type to use with an explicit

CHAPTER 5 GENERICS138

type parameter. This is not something that you have to do very often, which is a
good thing, as explicit type parameters aren’t very pretty. With the addition of this
explicit type parameter, the program compiles cleanly:

Set<Number> numbers = Union.<Number>union(integers, doubles);

Next let’s turn our attention to the max method from Item 27. Here is the orig-
inal declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types:

public static <T extends Comparable<? super T>> T max(
List<? extends T> list)

To get the revised declaration from the original one, we apply the PECS trans-
formation twice. The straightforward application is to the parameter list. It pro-
duces T instances, so we change the type from List<T> to List<? extends T>.
The tricky application is to the type parameter T. This is the first time we’ve seen a
wildcard applied to a type parameter. T was originally specified to extend Compa-
rable<T>, but a comparable of T consumes T instances (and produces integers
indicating order relations). Therefore the parameterized type Comparable<T> is
replaced by the bounded wildcard type Comparable<? super T>. Comparables are
always consumers, so you should always use Comparable<? super T> in prefer-
ence to Comparable<T>. The same is true of comparators, so you should always
use Comparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration
in the entire book. Does the added complexity really buy you anything? Yes, it
does. Here is a simple example of a list that would be excluded by the original
declaration but is permitted by the revised one:

List<ScheduledFuture<?>> scheduledFutures = ... ;

The reason that you can’t apply the original method declaration to this list is
that java.util.concurrent.ScheduledFuture does not implement Compara-
ble<ScheduledFuture>. Instead, it is a subinterface of Delayed, which extends
Comparable<Delayed>. In other words, a ScheduledFuture instance isn’t merely
comparable to other ScheduledFuture instances; it’s comparable to any Delayed
instance, and that’s enough to cause the original declaration to reject it.

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 139

There is one slight problem with the revised declaration for max: it prevents
the method from compiling. Here is the method with the revised declaration:

// Won’t compile - wildcards can require change in method body!
public static <T extends Comparable<? super T>> T max(

List<? extends T> list) {
Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Here’s what happens when you try to compile it:

Max.java:7: incompatible types
found : Iterator<capture#591 of ? extends T>
required: Iterator<T>

Iterator<T> i = list.iterator();
 ^

What does this error message mean, and how do we fix the problem? It means
that list is not a List<T>, so its iterator method doesn’t return Iterator<T>.
It returns an iterator of some subtype of T, so we replace the iterator declaration
with this one, which uses a bounded wildcard type:

Iterator<? extends T> i = list.iterator();

That is the only change that we have to make to the body of the method. The ele-
ments returned by the iterator’s next method are of some subtype of T, so they can
be safely stored in a variable of type T.

There is one more wildcard-related topic that bears discussing. There is a
duality between type parameters and wildcards, and many methods can be
declared using one or the other. For example, here are two possible declarations
for a static method to swap two indexed items in a list. The first uses an
unbounded type parameter (Item 27) and the second an unbounded wildcard:

// Two possible declarations for the swap method
public static <E> void swap(List<E> list, int i, int j);
public static void swap(List<?> list, int i, int j);

CHAPTER 5 GENERICS140

Which of these two declarations is preferable, and why? In a public API, the
second is better because it’s simpler. You pass in a list—any list—and the method
swaps the indexed elements. There is no type parameter to worry about. As a rule,
if a type parameter appears only once in a method declaration, replace it with
a wildcard. If it’s an unbounded type parameter, replace it with an unbounded
wildcard; if it’s a bounded type parameter, replace it with a bounded wildcard.

There’s one problem with the second declaration for swap, which uses a wild-
card in preference to a type parameter: the straightforward implementation won’t
compile:

public static void swap(List<?> list, int i, int j) {
list.set(i, list.set(j, list.get(i)));

}

Trying to compile it produces this less-than-helpful error message:

Swap.java:5: set(int,capture#282 of ?) in List<capture#282 of ?>
cannot be applied to (int,Object)

list.set(i, list.set(j, list.get(i)));
 ^

It doesn’t seem right that we can’t put an element back into the list that we just
took it out of. The problem is that the type of list is List<?>, and you can’t put
any value except null into a List<?>. Fortunately, there is a way to implement
this method without resorting to an unsafe cast or a raw type. The idea is to write a
private helper method to capture the wildcard type. The helper method must be a
generic method in order to capture the type. Here’s how it looks:

public static void swap(List<?> list, int i, int j) {
swapHelper(list, i, j);

}

// Private helper method for wildcard capture
private static <E> void swapHelper(List<E> list, int i, int j) {

list.set(i, list.set(j, list.get(i)));
}

The swapHelper method knows that list is a List<E>. Therefore, it knows
that any value it gets out of this list is of type E, and that it’s safe to put any value
of type E into the list. This slightly convoluted implementation of swap compiles
cleanly. It allows us to export the nice wildcard-based declaration of swap, while
taking advantage of the more complex generic method internally. Clients of the

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 141

swap method don’t have to confront the more complex swapHelper declaration,
but they do benefit from it

In summary, using wildcard types in your APIs, while tricky, makes the APIs
far more flexible. If you write a library that will be widely used, the proper use of
wildcard types should be considered mandatory. Remember the basic rule: pro-
ducer-extends, consumer-super (PECS). And remember that all comparables
and comparators are consumers.

CHAPTER 5 GENERICS142

Item 29: Consider typesafe heterogeneous containers

The most common use of generics is for collections, such as Set and Map, and sin-
gle-element containers, such as ThreadLocal and AtomicReference. In all of
these uses, it is the container that is parameterized. This limits you to a fixed num-
ber of type parameters per container. Normally that is exactly what you want. A
Set has a single type parameter, representing its element type; a Map has two, rep-
resenting its key and value types; and so forth.

Sometimes, however, you need more flexibility. For example, a database row
can have arbitrarily many columns, and it would be nice to be able to access all of
them in a typesafe manner. Luckily, there is an easy way to achieve this effect. The
idea is to parameterize the key instead of the container. Then present the parame-
terized key to the container to insert or retrieve a value. The generic type system is
used to guarantee that the type of the value agrees with its key.

As a simple example of this approach, consider a Favorites class that allows
its clients to store and retrieve a “favorite” instance of arbitrarily many other
classes. The Class object will play the part of the parameterized key. The reason
this works is that class Class was generified in release 1.5. The type of a class lit-
eral is no longer simply Class, but Class<T>. For example, String.class is of
type Class<String>, and Integer.class is of type Class<Integer>. When a
class literal is passed among methods to communicate both compile-time and
runtime type information, it is called a type token [Bracha04].

The API for the Favorites class is simple. It looks just like a simple map,
except that the key is parameterized instead of the map. The client presents a
Class object when setting and getting favorites. Here is the API:

// Typesafe heterogeneous container pattern - API
public class Favorites {

public <T> void putFavorite(Class<T> type, T instance);
public <T> T getFavorite(Class<T> type);

}

Here is a sample program that exercises the Favorites class, storing, retriev-
ing, and printing a favorite String, Integer, and Class instance:

// Typesafe heterogeneous container pattern - client
public static void main(String[] args) {

Favorites f = new Favorites();
f.putFavorite(String.class, "Java");
f.putFavorite(Integer.class, 0xcafebabe);
f.putFavorite(Class.class, Favorites.class);

ITEM 29: CONSIDER TYPESAFE HETEROGENEOUS CONTAINERS 143

String favoriteString = f.getFavorite(String.class);
int favoriteInteger = f.getFavorite(Integer.class);
Class<?> favoriteClass = f.getFavorite(Class.class);
System.out.printf("%s %x %s%n", favoriteString,

favoriteInteger, favoriteClass.getName());
}

As you might expect, this program prints Java cafebabe Favorites.
A Favorites instance is typesafe: it will never return an Integer when you

ask it for a String. It is also heterogeneous: unlike an ordinary map, all the keys
are of different types. Therefore, we call Favorites a typesafe heterogeneous
container.

The implementation of Favorites is surprisingly tiny. Here it is, in its entirety:

// Typesafe heterogeneous container pattern - implementation
public class Favorites {

private Map<Class<?>, Object> favorites =
new HashMap<Class<?>, Object>();

public <T> void putFavorite(Class<T> type, T instance) {
if (type == null)

throw new NullPointerException("Type is null");
favorites.put(type, instance);

}

public <T> T getFavorite(Class<T> type) {
return type.cast(favorites.get(type));

}
}

There are a few subtle things going on here. Each Favorites instance is
backed by a private Map<Class<?>, Object> called favorites. You might think
that you couldn’t put anything into this Map because of the unbounded wildcard
type, but the truth is quite the opposite. The thing to notice is that the wildcard
type is nested: it’s not the type of the Map that’s a wildcard type but the type of its
key. This means that every key can have a different parameterized type: one can be
Class<String>, the next Class<Integer>, and so on. That’s where the heteroge-
neity comes from.

The next thing to notice is that the value type of the favorites Map is simply
Object. In other words, the Map does not guarantee the type relationship between
keys and values, which is that every value is of the type represented by its key. In
fact, Java’s type system is not powerful enough to express this. But we know that
it’s true, and we take advantage of it when it comes time to retrieve a favorite.

CHAPTER 5 GENERICS144

The putFavorite implementation is trivial: it simply puts into favorites a
mapping from the given Class object to the given favorite instance. As noted, this
discards the “type linkage” between the key and the value; it loses the knowledge
that the value is an instance of the key. But that’s OK, because the getFavorites
method can and does reestablish this linkage.

The implementation of the getFavorite method is trickier than that of put-
Favorite. First it gets from the favorites map the value corresponding to the
given Class object. This is the correct object reference to return, but it has the
wrong compile-time type. Its type is simply Object (the value type of the favor-
ites map) and we need to return a T. So, the getFavorite implementation
dynamically casts the object reference to the type represented by the Class object,
using Class’s cast method.

The cast method is the dynamic analog of Java’s cast operator. It simply
checks that its argument is an instance of the type represented by the Class object.
If so, it returns the argument; otherwise it throws a ClassCastException. We
know that the cast invocation in getFavorite will never throw ClassCastExcep-
tion, assuming the client code compiled cleanly. That is to say, we know that the
values in the favorites map always match the types of the keys.

So what does the cast method do for us, given that it simply returns its argu-
ment? The signature of the cast method takes full advantage of the fact that class
Class has been generified. Its return type is the type parameter of the Class
object:

public class Class<T> {
T cast(Object obj);

}

This is precisely what’s needed by the getFavorite method. It is what allows us
to make Favorites typesafe without resorting to an unchecked cast to T.

There are two limitations to the Favorites class that are worth noting. First, a
malicious client could easily corrupt the type safety of a Favorites instance, sim-
ply by using a Class object in its raw form. But the resulting client code would
generate an unchecked warning when it was compiled. This is no different from
the normal collection implementations such as HashSet and HashMap. You can
easily put a String into a HashSet<Integer> by using the raw type HashSet
(Item 23). That said, you can have runtime type safety if you’re willing to pay for
it. The way to ensure that Favorites never violates its type invariant is to have the

ITEM 29: CONSIDER TYPESAFE HETEROGENEOUS CONTAINERS 145

putFavorite method check that instance is indeed an instance of the type repre-
sented by type. And we already know how to do this. Just use a dynamic cast:

// Achieving runtime type safety with a dynamic cast
public <T> void putFavorite(Class<T> type, T instance) {

favorites.put(type, type.cast(instance));
}

There are collection wrappers in java.util.Collections that play the same
trick. They are called checkedSet, checkedList, checkedMap, and so forth. Their
static factories take a Class object (or two) in addition to a collection (or map).
The static factories are generic methods, ensuring that the compile-time types of
the Class object and the collection match. The wrappers add reification to the col-
lections they wrap. For example, the wrapper throws a ClassCastException at
runtime if someone tries to put Coin into your Collection<Stamp>. These wrap-
pers are useful for tracking down who adds an incorrectly typed element to a col-
lection in an application that mixes generic and legacy code.

The second limitation of the Favorites class is that it cannot be used on a
non-reifiable type (Item 25). In other words, you can store your favorite String or
String[], but not your favorite List<String>. If you try to store your favorite
List<String>, your program won’t compile. The reason is that you can’t get a
Class object for List<String>: List<String>.class is a syntax error, and it’s a
good thing, too. List<String> and List<Integer> share a single Class object,
which is List.class. It would wreak havoc with the internals of a Favorites
object if the “type literals” List<String>.class and List<Integer>.class
were legal and returned the same object reference.

There is no entirely satisfactory workaround for the second limitation. There
is a technique called super type tokens that goes a long way toward addressing the
limitation, but this technique has limitations of its own [Gafter07].

The type tokens used by Favorites are unbounded: getFavorite and put-
Favorite accept any Class object. Sometimes you may need to limit the types
that can be passed to a method. This can be achieved with a bounded type token,
which is simply a type token that places a bound on what type can be represented,
using a bounded type parameter (Item 27) or a bounded wildcard (Item 28).

The annotations API (Item 35) makes extensive use of bounded type tokens.
For example, here is the method to read an annotation at runtime. This method

CHAPTER 5 GENERICS146

comes from the AnnotatedElement interface, which is implemented by the reflec-
tive types that represent classes, methods, fields, and other program elements:

public <T extends Annotation>
T getAnnotation(Class<T> annotationType);

The argument annotationType is a bounded type token representing an annota-
tion type. The method returns the element’s annotation of that type, if it has one,
or null, if it doesn’t. In essence, an annotated element is a typesafe heterogeneous
container whose keys are annotation types.

Suppose you have an object of type Class<?> and you want to pass it to a
method that requires a bounded type token, such as getAnnotation. You could
cast the object to Class<? extends Annotation>, but this cast is unchecked, so it
would generate a compile-time warning (Item 24). Luckily, class Class provides
an instance method that performs this sort of cast safely (and dynamically). The
method is called asSubclass, and it casts the Class object on which it’s called to
represent a subclass of the class represented by its argument. If the cast succeeds,
the method returns its argument; if it fails, it throws a ClassCastException.

Here’s how you use the asSubclass method to read an annotation whose type
is unknown at compile time. This method compiles without error or warning:

// Use of asSubclass to safely cast to a bounded type token
static Annotation getAnnotation(AnnotatedElement element,
 String annotationTypeName) {

Class<?> annotationType = null; // Unbounded type token
try {

annotationType = Class.forName(annotationTypeName);
} catch (Exception ex) {

throw new IllegalArgumentException(ex);
}
return element.getAnnotation(

annotationType.asSubclass(Annotation.class));
}

In summary, the normal use of generics, exemplified by the collections APIs,
restricts you to a fixed number of type parameters per container. You can get
around this restriction by placing the type parameter on the key rather than the
container. You can use Class objects as keys for such typesafe heterogeneous
containers. A Class object used in this fashion is called a type token. You can also
use a custom key type. For example, you could have a DatabaseRow type repre-
senting a database row (the container), and a generic type Column<T> as its key.

