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0 Introduction

Recall that an algorithm is a precise recipe for carrying out a task. We have
a wide variety of tools at our disposal for accomplishing computational tasks
in Python. We have looping, conditional logic and Python's smart objects at
our disposal that can easily automate complex procedures. The purpose of this
chapter is to allow us to �ex these new muscles.
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2 SEARCHING

1 A Rough Measure of Growth

Suppose that f and g are functions. We will say that f = O(g) as x→∞ if for
su�ciently large x, we have some constant M so that

|f(x)| ≤M |g(x)|,

for x su�ciently large.

To say this is simple English, f is at most proportional to g when x gets
big. This symbol O is called a Landau symbol, after the mathematician Edmund
Landau, who invented it along with Paul Bachmann. We will use this notation
to describe the time/space e�cency of algorithms.

2 Searching

Consider the task of searching a list for a particular item. If the list is unsorted
and contains n elements, we will just have to walk through the list, checking if
each element is the desired element we seek (the quarry). At most we will have
to do n checks. If the item is not present, we end up checking the whole list to
no avail.

We see that this procedure takes an amount of time at worst proportional to
the size of the list, so it is an O(n) or a linear-time algorithm. Note that when
the search �eld's size doubles, the time and memory it takes to do the search
also doubles.

Programming Exercise Use a loop to write contains(c, quarry), where
c is a list or tuple and quarry is an object. Have it return True if quarry is
present in c and False otherwise.

2.1 Binary Search

Later in this chapter, we will discuss sorting, but here will discuss a smart
scheme for searching a sorted list. This method will be quicker than the linear
search you just wrote because you will not need to inspect every element in the
list.

Suppose we have a list that is in sorted order. Here is a scheme for searching
it.

1. Look at the item halfway into the list.

2. if this item is your quarry, report True and you are done. If this item is is
before your quarry, discard the �rst half of the list; the quarry, if present,
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2.1 Binary Search 2 SEARCHING

is in the second half. If the item is after the quarry, the item is in the �rst
half of the list.

3. Repeat. If you end up discarding the entire list and never �nd the quarry,
return False

This method is called binary search.

Suppose your list contained a million elements. After each pruning of the
list, we have the following largest size of the remaining list.

1 1000000

2 500000

3 250000

4 125000

5 62500

6 31250

7 15625

8 7813

9 3907

10 1954

11 977

12 489

13 245

14 123

15 62

16 31

17 16

18 8

19 4

20 2

21 1

This procedure requires a maximum of 20 steps. Each time, the search �eld is
cut in half. So, all we are really asking is: How many times do we need to divide
a number by 2 until it is reduced to 1 or 0? This would be log2(n). So the time
for this procedure to do its job is O(log(n)). We say that such an algorithm is
a log-time algorithm.

You will notice an absence of a base in the logarithm; this is because all
logarithms are proportional to each other. The reason? Apply the change-of-
base formula for logs. We will use the notation log for the natural log function.

We all know from Ren and Stimpy that logs are big, heavy and wood. They
are also very slow-growing functions. So sorting a list makes �nding things in it
worlds faster. You can search a sorted list with a billion elements in 30 checks.
That's a whole lot better than a billion checks.
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3 ROOT FINDING

Figure 1: Fast-Moving Banana Slug

Programming Exercise Implement this algorithm in Python. Load the
Scrabble dictionary into a list using readlines. Then write a procedure to
search it for a word, returning True if the word is present and False otherwise.

3 Root Finding

We are going to describe an algorithm for �nding a zero (x�intercept) of a
continuous function that changes sign on an interval. This uses a �divide and
conquer� mechanism similar to that of the binary search algorithm you just
wrote. We need a one useful fact, the Weierstraÿ Intermediate value theorem.

Theorem. Let [a, b] be a closed, bounded interval and f be a continuous real-
valued function de�ned on this interval. If f changes sign on the interval, then
there is at least one x ∈ [a, b] so that f(x) = 0.

There is an easy way to check if two numbers x and y are of opposite sign;
just check to see if xy < 0.

Let us begin with an example. Suppose we are trying to approximate
√
2.

We know that the function f(x) = x2 − 2 has
√
2 as a root. Also we can see

that f(1) = −1 and f(2) = 2, so f must have a root on [1, 2].

We know that
√
2 = 1.5± .5. Now we do this. Check the midpoint; f(1.5) =

.25 and f(1) = −1 so we have now bounded our root to being in [1, 1.5]. This
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4 A LITTLE NUMBER THEORY

means
√
2 = 1.25± .25. At each step we see that we can obtain a value that is

within a tolerance of
√
2. When that tolerance is small enough, we can stop.

Programing Exercise Continue this calculation until you know
√
2 ± .001.

Can you automate the process with a Pyhon program?

Note that the error is at most (right - left)/2 where [left, right] is the
interval on which we know the function changes sign.

Programming Exercise Write a function zero(a, b, tol, f) that �nds
an approximation for a root of the function f on [a, b] with error tolerance tol.
The preconditon for calling this function is that f changes sign on [a, b].

4 A little number theory

Let us begin by looking at some elementary ideas of number theory. Back in
your Wormwood days, you learned about long division. You learned that if a
and b are positive integers, you can write

b = aq + r,

where q is an integer called the quotient, r is the remainder, and 0 ≤ r < a. In
fact, these integers q and r are unique. If the remainder r is zero, then a divides
into b evenly. In this event, we write a|b.

Python computes these quantities easily. Let us take b = 365 and a = 7.

>>> b = 365

>>> a = 7

>>> q = b//a

>>> r = b%a

>>> a*q + r == b

True

So, the quotient is just obtained by integer division and the remainder is com-
puted with our friend mod, %.

Testing for divisibility of numbers is easy. If you have integers a and b, then
you can test for a|b with the predicate b%a == 0. For example, to test if a
number n is even, you use the predicate n%2 == 0.

Back in your Wormwood days, you likely learned about prime numbers. The
number 1 was de�ned not to be prime. An integer 2 or larger is prime if its only
positive divisors are 1 and itself. For example, 4 is not prime, because 2|4. More
generally, a number is not prime if it can be factored into two smaller integers.
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4 A LITTLE NUMBER THEORY

The prime factoriaztion theorem states that every number n ≥ 2 can be
factored uniquely into primes. Back in the day, Miss Wormwood taught about
factor trees, which provide a nifty method for doing this. Here is how they
worked. Suppose we want to factor the number 224. It's a cinch that 224 is
divisible by 4. We begin by drawing this.

Both of the leaves on the tree can be factored into smaller integers; do so.
The wonderful machinery of number theory says that the result at the end is
the same no matter how you do this.

Two of the leaves on this tree now have 2s in them; they are prime. Similarly,
there is nothing to be done with the 7. We will �cheat� and factor the 8 into
three 2s.
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4 A LITTLE NUMBER THEORY

Every leaf on the tree is prime; it cannot be factored further. We simply pluck up
the numbers inside of the leaves of the tree. We now have this prime factorization
for 224.

224 = 2 · 2 · 2 · 7 · 2 · 2 = 25 · 7.

Now we will create a function that tests positive integers for primality.

To begin, observe that the number 2 is prime because it cannot be factored
into two smaller integers. However, any even number n larger than 2 satis�es
2|n, so even numbers larger than 2 are not prime. So, we can begin writing our
isPrime function as follows.

def isPrime(n):

if n == 1:

return False

if n == 2

return True

if n%2 == 0:

return False

##we are not done yet.

return "cows"

Test this function out. It will return False if n is 1 or if it is an even number
larger than 2. It will return True if n is 2. For all other cases, it will punt and
return "cows", a ridiculous value we provide to remind ourselves we are not
done yet.

We could accomplish the rest as follows. We then take a couple of known
primes for a spin.
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4 A LITTLE NUMBER THEORY

def isPrime(n):

if n == 1:

return False

if n == 2:

return True

if n%2 == 0:

return False

k = 3

while k < n:

if n % k == 0:

return False

k += 1

return True

print(isPrime(997))

print(isPrime(10000019))

Ugh. We're movin' kinda slow at the junction.

unix> time python wasteful.py

True

True

real 0m1.980s

user 0m1.508s

sys 0m0.073s

This has to do a whole lot of checks before it resolves; the cost of the procedure
is roughly proportional to the number you ask it to check if you pass it a prime
and less otherwise.

Now here is an interesting little jewel of a fact that will make our function
sweetly e�cient. Suppose that you have a positive integer n and you write
n = ab where a and b are integers. Then at least one of a or b must satisfy the
condition k ∗ k ≤ n.

Let us show an example. Take the number 36 and write 36 = 9 ∗ 4. Notice
that 4 ∗ 4 = 14 ≤ 36. If you write 36 = 6 ∗ 6, then both factors have a square
that is at most 36. As you shall see all we care is that at least one factor has a
square that is at most n.

So let us improve this. For starters, because of our preliminary tests, we
can begin with k = 3. Also, we can discard all even numbers, so each time the
loop runs let us update with k += 2. This will keep us testing with only odd
numbers. Et Voila! We have a 50% improvement.

You should take your existing implementation of isPrime and integrate this
improvement.
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4 A LITTLE NUMBER THEORY

But, like the Ginsu Knife Man says, �There is more!� A while back, we
learned this: if for a positive integer n we have no k so that k ∗ k ≤ n and
n%k = 0, then n is prime! One thing we know here is that the square root of a
large number is a whole lot less than the original number. This becomes more
acutely so as the original number gets bigger. Let us put this together. Here is
what we had.

def isPrime(n):

if n == 1:

return False

if n == 2

return True

if n%2 == 0:

return False

##we are not done yet.

return "cows"

Now we start at k = 3 and go up by 2 each time. The cows get the boot,
because if the loop ends without �nding a prime, we know that n is prime.

def isPrime(n):

if n == 1:

return False

if n == 2:

return True

if n%2 == 0:

return False

k = 3

while k < n:

if n%k == 0:

return False

k += 2

return True

Next, insert our other improvement.

def isPrime(n):

if n == 1:

return False

if n == 2:

return True

if n%2 == 0:

return False

k = 3

while k*k <= n:
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5 THE PERFORMANCE OF ISPRIME

if n%k == 0:

return False

k += 2

return True

Now let's run it.

unix> time python faster.py

True

True

real 0m0.073s

user 0m0.042s

sys 0m0.017s

Va voom!

Programming Exercises

1. Implement a function called smallestFactor(n) that does the following.
It accepts a positive integer n. If n is 1 it just returns 1. Otherwise, it
�nds the �rst positive integer k so that k|n. Here are some handy test
cases.

smallestFactor(997) == 997

smallestFactor(323) == 17

smallestFactor(1) == 1

smallestFactor(1728) == 2

smallestFactor(1005973) == 997

Try hard to minimize the number of times the loop runs. Borrow from
the ideas usedin isPrime.

2. Why does smallestFactor return prime numbers if n >= 2?

3. Use smallestFactor to implement a function called primeFactors(n),
which returns a list of all prime factors of the positive integer n passed it.
If n == 1, return an empty list. Can you use recursion to do this?

4. Run primeFactors on several di�erent cases. Why is the list it returns
always in numerical order?

5 The Performance of isPrime

We just saw that there is more than one way to test a number for primality.
Both ways worked, but, using a little knowledge of mathematics, we were able to
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6 ITERATIVE TECHNIQUES

achieve a huge boost in performance. Now it's time to break out some Landau
symbols.

The unimproved isPrime function used the predicate k < n in its while

loop. This loop could run as many as (n - 1)//2 times. So, the cost of
executing this procedure is at most proportional to n, the size of the number we
are testing for primality. We would say this algorithm is O(n), or linear-time.

The improved algorithm used the predicate k*k < n in its while loop. It
could not possibly run more than

√
n times. This makes the improved algorithm

a O(
√
n) algorithm.

You know that when n is large,
√
n is far smaller than n. So this improved

algorithm is much faster than its unimproved counterpart.

6 Sorting using Iterative Techniques

Python performs sorting on lists as a service. However, it is important to
understand how sorting works. We will study several sorting algorithms, starting
with the dreadful and moving to the �eet. What we show here is just a small
sampling of what is out there.

Imagine you have a deck of cards with numbers on them. Here is a possible
way to sort them; it is called the Bozo sort. It is named after the character
Bozo, who was a clown in a show that was popular from the late 1940s into the
1960s.

1. Check to see if the deck is in order; if so, you are done.

2. If not, shu�e the deck and repeat Step 1.

Let us see that this can work. Create a program called sorts.py. We can
shu�e a list using its shuffle method.

First, let us write a function to see if a list is in order; let us agree on
ascending order. Just reverse the inequalities in the predicates for descending
order. To do this, we just walk up to each pair of elements and check if they
are in order. If a pair is not, a False is returned.

def isInOrder(deck):

for k in range(len(deck) - 1):

if deck[k] > deck[k+1]:

return False

return True

Now let us write code to test our result. This code will shu�e a �deck�, which
is a list of consecutive integers, then sort with the bozo method. We will stub
the bozo method in. and put our test code in.
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6 ITERATIVE TECHNIQUES

import random

def isInOrder(deck):

for k in range(len(deck) - 1):

if deck[k] > deck[k+1]:

return False

return True

def bozo(deck):

pass #do nothing

def main():

pass

main()

Running this code will not shu�e the deck. Now we add the code to do that.

import random

def isInOrder(deck):

for k in range(len(deck) - 1):

if deck[k] > deck[k+1]:

return False

return True

def bozo(deck):

while(not isInOrder(deck)):

random.shuffle(deck)

def main():

deck = list(range(9))

random.shuffle(deck)

bozo(deck)

print(deck)

main()

Here we are shu�ing a deck with 9 items in it. Now run it. Even for a handful
of elements, this works dreadfully. Remember, 9! = 362880. This sort works on
the average in O(n!) time, which is terrible.

Tue Feb 07:13:28:ppp> time python sorts.py

[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m4.711s

user 0m4.344s

sys 0m0.080s

Tue Feb 07:13:28:ppp> time python sorts.py

[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m7.150s

user 0m6.993s
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6 ITERATIVE TECHNIQUES

sys 0m0.060s

Tue Feb 07:13:29:ppp> time python sorts.py

[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m5.379s

user 0m5.185s

sys 0m0.055s

We can do better.

Let us look at a sort that works in a more reasonable amount of time, the
bubble sort. Suppose we have a list, and we walk up to each pair of elements in
succession. If the elements are in order, do nothing. If not, switch them. After
one pass, you will see that the largest element will have �bubbled� to the top.

Now we can repeat the procedure and skip checking the last element. Then
the two largest elements will be at the top. We continue until the list is sorted.

Let us begin to write this procedure in a function named bubble. We will
have two integer variables, k and end. The variable end will point at the index
dividing the sorted and unsorted portions of the list. The variable k will do the
walking up to the pairs. So here is how we get started.

def bubble(x):

end = len(x)

#more code

Each time the inner loop runs we have a loop invariant, which is a set of
statements that is true after each execution of the loop. Our loop invariant is
this: items to the right of end are the largest elements in sorted order and items
to the left have no guaranteed order. Yep, it's a jungle out there.

Let us make a general pass of the loop.

def bubble(x):

end = len(x)

for k in range(end) - 1):

if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]

#more code

As is, this does one pass of the loop. At the end of each pass, end may be
reduced by 1; let's put that in.

def bubble(x):

end = len(x)

for k in range(end - 1):
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6 ITERATIVE TECHNIQUES

if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]

end -= 1

When are we done? How about when end gets down to 1; by the process of
elimination, the �rst element must be in place. We will need to enclose our for
loop in another loop.

def bubble(x):

end = len(x)

while end > 1:

for k in range(end) - 1:

if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]

end -= 1

Let's test this.

import random

def isInOrder(deck):

for k in range(len(deck) - 1):

if deck[k] > deck[k+1]:

return False

return True

def bozo(deck):

while(not isInOrder(deck)):

random.shuffle(deck)

def bubble(x):

end = len(x)

while end > 1:

for k in range(end - 1):

if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]

end -= 1

def main():

deck = list(range(9))

random.shuffle(deck)

bubble(deck)

print(deck)

main()

That was so fast on 9 elements it was basically instant. Let's try this on 10,000
elements.

$ time python sorts.py
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real 0m13.159s

user 0m13.011s

sys 0m0.057s

Here is the result on 5000 elements. It is about 1/4 as long

Tue Feb 07:14:08:ppp> time python sorts.py

real 0m3.509s

user 0m3.305s

sys 0m0.039s

If you did this with the bozo sort, the sun would likely nova �rst and consume
the Earth before your list would ever be sorted. Even the bubble sort seems a
little slow.

You might ask, �What is the big-O classi�cation for this sort?� Let us think
about it. The �rst time through we perform n − 1 checks. The second time
through, we perform n− 2 checks. Each time the number of checks diminishes
by 1. The total number is

(n− 1) + (n− 1) + · · · 1 =

n−1∑
k=1

k.

Yes, there is a formula for this,

n−1∑
k=1

k =
n(n− 1)

2
= O(n2).

The bubble sort is an example of a quadratic sort.

Now we will look at two other sorting methods, insertion sort and selection
sort. Both of these are quadratic sorts, but the constant of proportionality is
somewhat smaller. The insertion sort works in a manner similar to that of a
player picking up cards and inserting them in his hand. As he picks up each
card, he places it in the appropriate place in his hand until all of the cards are
inserted.

It is best if we can do our sort in-place without using additional memory.
So here is an idea. If the array is empty, do nothing and return immediately.
Otherwise, make a variable called end and have it point at index 1 in the array.
The loop invariant is this: items to the left of end are sorted there is no asser-
taion about items to the right. We now do the following. Add 1 to end. Then,
keep swapping the new entry with its neighbor to the left until it is in the right
place (a �trickle down�) procedure. We keep doing this until end reaches the
right-hand end of the array.
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Let us begin here. If the list is empty, we bail. If not, we mark end at 1.
Notice here that everthing to the left of end is sorted, because there is only one
entry over there.

def insertion(x):

if x == []:

return

end = 1

Now let's block in some more code.

def insertion(x):

if x == []:

return

end = 1

while end < len(x) - 1:

end += 1

#then trickle down

Now let us explain carefully. Suppose we have this array

1 3 5 9 |4 0

(end)

We increment end.

1 3 5 9 4 |0

(end)

We will keep swapping with the neighbor to the left until 4 is in the right place.

1 3 5 9 4 |0

1 3 5 4 9 |0

1 3 4 5 9 |0

(end)

Let us do this again. Begin by incrementing end

1 3 5 9 4 |0

1 3 4 5 9 0 |

(end)

Now do the swaps. WARNING: We do not want to attempt to check the left-
hand neighbor of 0 when it gets to the bottom! If we do so we will be comparing
with the item at the end of the list. This will make a horrid mess. We will use
short circuiting to prevent this.
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def insertion(x):

if x == []:

return

end = 1

while end < len(x) - 1:

end += 1

k = end

#trickle down; notice k >= 1 condition

while k >= 1 and x[k] < x[k - 1]:

x[k], x[k - 1] = x[k - 1], x[k]

k -= 1

You can put this in sorts.py and test it. This method is quite a bit faster than
the bubble sort. Typically, unless you are very unlucky, the trickle down proce-
dure only trickles about half-way down on average. This means it is executing
far fewer instructions than the bubble sort.

Now we will implement the insertion sort. If the list is empty do nothing.
Otherwise we set end = 0.

def selection(x):

if x == []:

return

end = 0

Now we scan the list beyond end for the smallest element and swap it with
x[end]. After this we update end by incrementing it.

def selection(x):

if x == []:

return

end = 0

while end < len(x):

j = end

for k in range(1 + end, len(x)):

if x[j] > x[k]:

j = k

x[j],x[end] = x[end], x[j]

end += 1

All of the sorting algorithms we used here are quadratic sorts, i.e. they operate
in O(n2) time. Next, we will use recursion to perform sorts and we will realize
a signi�cant increase in performance for sorting large lists.
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7 MERGESORT

7 A Recursive Sort: Mergesort

Imagine you want to sort a humongous list. You might do this. Break the list
in two. Use a quadratic sort on each half. Each half will take 1/4 as long as
doing a quadratic sort on the entire list. Then, once you have the two sorted
lists, zipper them back together; that procedure is O(n) as we shall soon see.
We realize a signi�cant performance boost.

Any handle worth cranking once is probably worth cranking a whole lot.
What if we take each of the two smaller lists, cut them in half and . . . ?

That is the idea behind the merge sort. To make the merge sort work, we
must �rst write a procedure to zipper two sorted lists together.

So suppose we have sorted lists x and y. Begin by making variables j and
k and setting them both to be 0. We then make a new list. In each iteration
we put the smaller of x[j] and x[k] on the new list, then iterate the index we
used. So some code looking like this might be in order.

def zipper(x,y):

j = 0

k = 0

out = []

while j < len(x) and k < len(y):

if x[j] < y[k]:

out.append(x[j])

j += 1

else:

out.append(y[k])

k += 1

Once we get here, we will have arrived at the end of one or both of the two lists.
Just append their tails and return our result as follows.

def zipper(x,y):

j = 0

k = 0

out = []

while j < len(x) and k < len(y):

if x[j] < y[k]:

out.append(x[j])

j += 1

else:

out.append(y[k])

k += 1

out += x[j:]
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out += x[k:]

return out

Now let us write the actual sort. Lists of length 0 or 1 are fully sorted. So we
can no proceed as follows.

def merge(x):

if len(x) <= 1:

return x

Now comes the recursive step. Cut the list in two and call the merge function
on each half and zipper them up!

def merge(x):

if len(x) <= 1:

return x

mid = len(x)//2

first = x[:mid]

second = x[mid:]

return zipper(merge(first), merge(second))

The disadvantage to this method that is is not an in-place method. You have to
create an additional copy of the list. However, you will see that is now feasible
to sort a 1,000,000 integer list on your PC.

Programming Exercises In this exercise, you will learn about the Gnome

Sort, which was named by its inventor Hamid Sarbazi-Azad as the Stupid Sort.
What is interesting is that our quadratic sorts have an inner and outer loop.
This has a single loop. Here is the idea.

1. If the list has fewer than two items, you are done. Otherwise proceed as
follows.

(a) Start at the beginning of the list.

(b) Move right one.

(c) Check your value and the value to the left. If they are in order, move
right one.

(d) If they are out of order, swap them and move one to the left. If you
are at the beginning, move right one.

(e) Once you skid o� the right hand end of the list, you are done.

2. Shu�e the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and run this procedure
on it, printing it after each iteration. What do you see?

3. Learn about Timsort; this is the sorting method actually used by Python
and Java. It is a variant on mergesort that seeks out runs in the data and
zips them together.
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8 Terminlogy Roundup

� binary search This is a divide and conquer technique by which we elim-
inate half of the search �eld in each iteration.

� Bozo sort This is sorting technique in which elements are shu�ed and
checked for proper order repeatedly until they are in the proper order.

� Gnome aka Stupid Sort This is a sort due to Hamid Sarbazi-Azad that
looks like a modi�ed insertion sort

� linear-time This describes an algorithm whose computational cost is pro-
portional to the size of the problem.

� merge sort This is a recursive sort that keeps splitting the list into pieces
until they are of size 1 or zero, and which zips the results together.

� quotient This is the result of dividing two numbers.

� remainder This is the remainder left by integer division.

� prime factoriaztion theorem

� quadratic sort This describes an algorithm whose computational cost is
proportional to the size of the square of the problem.

� sequence This is a data structure that contains a collection indexed by
the nonnegative integers.
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