AVERAGING FUNCTIONS

In this lab, we shall study the notion of the average value of a function and figure out what the definition
should be. Let us do this for a simple function, f(z) = x? on the interval [0, 2].

1. Compute an approximate average value for f as follows.
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What do you get? Why 11 and not 10?7 We have computed an approximate average value by using 11
equally spaced sample points.

2. Compute the approximate average value for f with 100 sample points, a1 (f)-

3. Using summation notation, write a formula for a,(f). What is a general formula for this for an arbitrary
function f defined on a closed, bounded interval [a, b]?

4. Let’s go back to the case of f(x) = 22, x € [0,2]. Recall the identity

n>1.
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Use this identity to obtain a closed—form expression for a,(f).
5. Let n — oo in the last part of this problem. What should the average value of f be on [0, 2]?

6. Let g be a constant function defined on [0, 2]. Pick its (constant) value so that

/029(@ dz = /jf(:c) da.

7. Let f be a function defined on a closed bounded interval [a,b]. Find a constant function ¢ so that

/abf(x) do = /abg(x) da.

We are now going to assume our function is continuous. Note the following result
Theorem. Let f be a continuous function on an interval [a,b]. If f > 0 and if fab f(z)dx =0 then f =0

on [a, b].

8. Show that if f is a continuous nonnegative function on a closed bounded interval [a,b] with a < b with
zero average value, it must be zero. Is the hypothesis a < b really necessary?

9. Suppose that f is a continuous function on the interval [0oc]. We define the average value of f to be
T
a(f) = lim / f(t)dt.
T—oo Jo
Compute the average value of the function f(z) = e™*, > 0. Comment on it in light of the last two results.
10. Compute the average values of = ~— sin(z) and = — sin?(z) on [0,00). What can you say about a

sinusiod of the form
a+ beos(Ax) 4 csin(ux),

where A and p are nonzero constants, and a, b and ¢ are arbitrary real constants?



