Solutions to Problem Set 2, Discrete G Tri 1, 0405

1. Show that $(A \cap B)^c = A^c \cup B^c$ implies $(A \cup B)^c = A^c \cap B^c$. Solution. In the identity $(A \cap B)^c = A^c \cup B^c$, replace A with A^c and B with B^c to get

$$(A^c \cap B^c)^c = A^{cc} \cup B^{cc} = A \cup B.$$

To finish, take compliments on both sides.

2. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution. To do this we will establish the tautology

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R).$$

This can be done with the following truth table

			0			_	()
P	Q	R	$P \wedge Q$	$P \wedge R$	$(Q \lor F)$	$(Q \wedge R) \xrightarrow{P \wedge Q} (Q \wedge R)$	$(P \land Q) \lor$ $(P \land R)$
Т	Т	Т	Т	Т	Т	T	T
Т	Т	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
Т	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
F	Т	Т	\mathbf{F}	\mathbf{F}	Т	F	\mathbf{F}
F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	F	\mathbf{F}
F	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
F	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

3. Prove that $A\Delta B = (A \cup B) - (A \cap B)$.

Solution.

We shall invoke the DeMorgan and distributive laws in the following chain of equalities

$$\begin{aligned} (A \cup B) - (A \cap B) &= (A \cup B) \cap (A \cap B)^c \\ &= (A \cup B) \cap (A^c \cup B^c) \\ &= (A \cap A^c) \cup (A \cap B^c) \cup (B \cap B^c) \cup (A^c \cap B) \\ &= \emptyset \cup (A - B) \cup \emptyset \cup (B - A) \\ &= (A - B) \cup (B - A) = A \Delta B. \end{aligned}$$